簡易檢索 / 詳目顯示

研究生: 洪源璟
HUNG YUAN JING
論文名稱: 異質銲接件經GTAW覆銲處理後殘留應力分布
Residual stress distribution after Overlay weld with Gas Tungsten Arc Welding of Dissimilar Metal
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 黃育熙
YU-SI HUANG
鄭偉鈞
WEI-JYUN JHENG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 異質銲接覆銲X-ray繞射殘留應力
外文關鍵詞: dissimilar metal weld, cladding, X-ray diffraction, residual stress
相關次數: 點閱:283下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用A508低合金鋼與316L不銹鋼為母材,填料對接、緩衝層及覆銲層製作使用鎳基182合金、82合金和52M合金作為熔填金屬,透過GTAW及SMAW銲接技術,採用Temper bead之銲接方式完成銲接作業。透過銲接參數及程序之設定,檢視銲接區域之微觀變化,最後使用X-ray檢測銲接區域之軸向殘留應力,探討異質銲接件經覆銲前、後殘留應力值變化。
實驗結果顯示,A508母材熱傳導速度快熱膨脹係數小,可以快速舒緩及平衡銲接時造成的局部熱應力;182合金和316L母材則易因熱傳導速度慢熱膨脹係數大而產生局部高溫造成熱量累積,冷卻後產生嚴重的拉扯,增加殘留應力。覆銲層施作時的熱影響,皆可使銲件厚度中心以上產生明顯的壓應力。異質介面處主要因熱膨脹係數差異造成相互拉扯,而產生應力疊加或抵消,若界面間熱傳導及熱膨脹係數差異愈大,產生殘留應力變化量將更加顯著。


This research involved weldment of dissimilar A508 low alloy steel and 316L stainless steel for base metal. The welding of dissimilar parts was conducted by use of gas tungsten arc welding (GTAW) and gas metal arc-welding (GMAW) techniques with nickel-based 82/182 alloys used as filler metal for butt joint and butter layer while inconel alloy 52M used for cladding. Observation of microstructure changes within the weldment and its were conducted for different settings of welding parameters and processes. The X-ray diffraction method was used to detect and analyze the axial residual stress on the dissimilar metal weld area and on the cladding layer of the weldment .
Experimental results showed that thermal stress was generated during cooling of weldment due low thermal expansion coefficient of A508 base metal and high thermal expansion coefficient of 182 alloy and 316L base metal. Residual stresses therefore increased after cooling of welding due to presence of both compressive and tensile stresses. The thermal influence of the cladding layer can also significantly increase compressive stress at the weldment. The interface of the dissimilar metal weldment experienced tensile stresses due to difference in thermal expansion coefficient, and the residual stress. Thus, residual stress would increase further with increased difference of thermal expansion coefficients.

目錄 第一章 前言 1 第二章 文獻回顧 3 2.1核電廠組件應用 3 2.2基礎材料 4 2.2.1低合金鋼 4 2.2.2不銹鋼 4 2.3鎢極氣體保護電弧銲 5 2.3.1原理 5 2.3.2銲接參數 6 2.4異質銲接 8 2.5覆銲工法 10 2.6銲接原理 12 2.6.1預熱 12 2.6.2凝固模式 13 2.7殘留應力 17 2.7.1 成因及影響 17 2.7.2 X-ray 量測 19 第三章 實驗方法 25 3.1實驗流程 25 3.2材料組成及試片製備 26 3.3異質對接 29 3.3.1銲接參數設定 29 3.3.2銲接流程 30 3.4覆銲層施作 32 3.4.1銲接參數設定 32 3.4.2銲接流程 33 3.5鎢極氣體保護電弧銲 35 3.6屏蔽金屬電弧銲 37 3.7殘留應力檢測 38 3.8微硬度試驗 39 3.9微觀分析方法與設備 40 第四章 實驗結果 41 4.1銲接件 41 4.1.1銲後微觀組織及性質 42 4.1.1.1 A508低合金鋼熱影響區 42 4.1.1.2鎳基182合金填料金屬 45 4.1.1.3 316L不銹鋼熱影響區 51 4.1.2殘留應力分布 54 4.1.2.1填料中心與母材 54 4.1.2.2鄰近熔融線區 56 4.2覆銲層施作後之銲接件 59 4.2.1銲後微觀組織及性質 60 4.2.1.1 A508低合金鋼熱影響區 60 4.2.1.2鎳基182合金填料金屬 62 4.2.1.3 316L不銹鋼熱影響區 67 4.2.2殘留應力分布 70 4.2.2.1填料中心與母材 70 4.2.2.2鄰近熔融線區 73 第五章 討論 78 5.1銲接件殘留應力 78 5.1.1填料中心及母材區 78 5.1.2鄰近熔融線區 82 5.2覆銲層施作後殘留應力 84 5.2.1填料中心及母材區 85 5.2.2鄰近熔融線區 86 第六章 結論 88 參考文獻 89

[1] H. Ming, Z. Zhang, J. Wang, E.-H. Han, and W. Ke, "Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint," Materials Characterization, vol. 97, pp. 101-115, 2014.
[2] Winarto, M. Anis, and T. P. Hertanto, "Mechanical Properties and Microstructure of Welded Dissimilar Metals Using Buttering & Non-Buttering Layer," Advanced Materials Research, vol. 789, pp. 341-346, 2013.
[3] T. Sarikka et al., "Effect of mechanical mismatch on fracture mechanical behavior of SA 508 – Alloy 52 narrow gap dissimilar metal weld," International Journal of Pressure Vessels and Piping, vol. 157, pp. 30-42, 2017.
[4] Q. Y. Hou, J. S. Gao, and F. Zhou, "Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing," Surface and Coatings Technology, vol. 194, no. 2-3, pp. 238-243, 2005.
[5] L. B. R. Iakovou, G. Papadimitriou, "Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance," Wear vol. 252, pp. 1007–1015, 2002.
[6] E. P. X.-L. Wang , B. Taljat ,C.R. Hubbard,J.R. Keiser ,M.J. Jirinec "Experimental determination of the residual stresses in a spiral weld overlay tube," Materials Science and Engineering vol. A232, pp. 31-38, 1997.
[7] H. T. Wang, G. Z. Wang, F. Z. Xuan, C. J. Liu, and S. T. Tu, "Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems," Materials Science and Engineering: A, vol. 568, pp. 108-117, 2013.
[8] R. Singh, "Stresses, Shrinkage, and Distortion in Weldments," pp. 201-238, 2016.
[9] R. Singh, "Stainless Steels," pp. 83-90, 2016.
[10] A. K. Singh, V. Dey, and R. N. Rai, "Techniques to improveweld penetration in TIG welding (A review)," Materials Today: Proceedings, vol. 4, no. 2, pp. 1252-1259, 2017.
[11] S. Chen, S. Zhang, N. Huang, P. Zhang, and J. Han, "Droplet transfer in arcing-wire GTAW," Journal of Manufacturing Processes, vol. 23, pp. 149-156, 2016.
[12] S. Kou, "Welding Metallurgy," Wiley Interscienc, vol. 2nd Edition, pp. 37-53, 2002.
[13] V. S. M. Sireesha , Shaju K. Albert , S. Sundaresan, "Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800," vol. Materials Science and Engineering A292 (2000) 74–82, 2000.
[14] C. Jang, J. Lee, J. Sung Kim, and T. Eun Jin, "Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel," International Journal of Pressure Vessels and Piping, vol. 85, no. 9, pp. 635-646, 2008.
[15] J. L. Caron and J. W. Sowards, "Weldability of Nickel-Base Alloys," pp. 151-179, 2014.
[16] H. Ming, Z. Zhang, J. Wang, E.-H. Han, P. Wang, and Z. Sun, "Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW," Materials Characterization, vol. 123, pp. 233-243, 2017.
[17] R. W. Gathot Dwi Winarto, Irsyadus Syarif, "Analysis of Buttering Method on Mechanical Properties Welded Material Low Carbon Steel," Proceeding Series, vol. Vol. 1, pp. 109-113, 2014.
[18] D. L. R. T. Lant, B. Spafford, and J. Storesund, "Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking," International Journal of Pressure Vessels and Piping, vol. vol. 78, no. 11-12, pp. pp. 813-818, 2001.
[19] B. K. Srivastava, S. Tewari, and J. Prakash, "A review on effect of preheating or post weld heat treatment (PWHT) on mechanical behavior of ferrous metals," Engineering Science and Technology, vol. 2, no. 4, pp. 625-631, 2010.
[20] J. C. lippold, "Welding Metallurgy and Weldability," Wiley Interscienc, pp. 19-22, 2015.
[21] N. Syahroni and M. I. P. Hidayat, "3D finite element simulation of T-joint fillet weld: Effect of various welding sequences on the residual stresses and distortions," in Numerical Simulation-From Theory to Industry: InTech, 2012.
[22] R. V. P. R.A. Owen , P.J. Withers , H.R. Shercliffb, P.J. Webster "Neutron and synchrotron measurements of residual strain in TIG welded aluminium alloy 2024," Materials Science and Engineering: A, vol. A346, pp. 159-167, 2003.
[23] C.C. L. Tso-Liang Tenga, "Effect of welding conditions on residual stresses due to butt welds," Pressure Vessels and Piping, vol. 75 pp. 857–864, 1998.
[24] C.P. C. Yao-Long Tsai, "The Study on Welding Temperature and Residual Stress of S15C/SUS304 Dissimilar Metal Butt Joint," National Chiao Tung University Department of Mechanical Engineering pp. 48-64, 2010.
[25] Y. K. Nate Peterson, Bill Traeger,Paul Sanders, "Assessment and Validation of Cosα Method for Residual Stress Measurement," Shot peening - performance, 2017.
[26] X. Cheng, "Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures," International Journal of Fatigue, vol. 25, no. 9-11, pp. 1259-1269, 2003.
[27] P. S. Prevéy, "X-ray Diffraction Residual Stress Techniques
" Metals Handbook, vol. 10, pp. 380-392, 1986.
[28] J. F. G. Vander Voort, "Current Applications of X-Ray Diffraction Residual Stress Measurement," Developments in Materials Characterization Technologies, pp. p103-110, 1996.
[29] 吳佩芳, 吳威德, 賀克勤 ,吳典黻, 楊智綱, 陳裕德, "熱處理條件對銲後 SAE4130 鋼板殘留應力量測與消除效果之比較," 國立中興大學, 2012.
[30] H. Alipooramirabad, A. Paradowska, R. Ghomashchi, A. Kotousov, and M. Reid, "Quantification of residual stresses in multi-pass welds using neutron diffraction," Journal of Materials Processing Technology, vol. 226, pp. 40-49, 2015.
[31] M. Farajian, "Welding residual stress behavior under mechanical loading," Welding in the World, vol. 57, no. 2, pp. 157-169, 2013.
[32] S. S. T. Charles Fourcade , P.E. ,Marcos L. Herrera, P.E.,G. Angah Miessi "Weld Overlay Design Report for the Hatch Nuclear Plant Unit 2 Recirculation Inlet N2G Nozzle N2G Weld 2B31-1RC-12AR-G-5," Southern Nuclear Operating Company. Inc, vol. No. 0900556.401, pp. 20-27, 2010.
[33] A. Q. B. Luciana Iglésias Lourenço Lima, Angel Raphael Arce Chilque "Characterization of alloy 82/182 dissimilar weld metal used between ASTM A-508 low alloy steel and 316L stainless steel," 20th International Congress of Mechanical Engineering, 2009.
[34] K. S. Kim, H. J. Lee, B. S. Lee, I. C. Jung, and K. S. Park, "Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld," Nuclear Engineering and Design, vol. 239, no. 12, pp. 2771-2777, 2009.
[35] I. S.-F. D. Akbari, "Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints," Pressure Vessels and Piping, vol. 86, pp. 769–776, 2009.
[36] 周. 蔡曜隆, "S15CSUS304 異種金屬銲接之溫度與殘留應力研究," 國立交通大學機械工程系, pp. 38-45, 2010.
[37] R.-F. Liu and C.-C. Huang, "Welding residual stress analysis for weld overlay on a BWR feedwater nozzle," Nuclear Engineering and Design, vol. 256, pp. 291-303, 2013.
[38] C.-C. L. Tso-Liang Tenga, "Effect of welding conditions on residual stresses due to butt welds," Pressure Vessels and Piping vol. 75, pp. 857–864, 1998.

QR CODE