簡易檢索 / 詳目顯示

研究生: 洗鴻瑋
Hong-Wei Sian
論文名稱: 應用新穎人工智慧神經網路於電力設備故障診斷
Application of Novel Artificial Intelligence Neural Networks in Power Apparatus Fault Diagnosis
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
黃維澤
Wei-Tzer Huang
李俊耀
Chun-Yao Lee
張建國
Chien-Kuo Chang
郭政謙
Cheng-Chien Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 148
中文關鍵詞: 人工智慧技術電力設備故障診斷卷積機率神經網路卷積可拓神經網路
外文關鍵詞: Artificial Intelligence Technology, Power Apparatus, Fault Diagnosis, Convolutional Probabilistic Neural Network, Convolutional Extension Neural Network
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來積極推動智慧製造與工業4.0的發展,增進人工智慧技術廣泛地應用於電力系統的每一環節,使得電力設備故障診斷朝向數位化、智能化與預測化之需求趨勢,憑藉採集設備運作之訊號數據,搭配人工智慧技術,便能快速且準確地篩選電力設備出現的各種故障類型,掌握電力系統運轉狀態,針對存在問題的設備得以提早發現某些徵兆,及時進行設備維修保養與零件更換,避免無預警的異常事故發生。因此,電力設備應用人工智慧技術實現故障預測與診斷,有助於提升電力系統運轉效率及供電穩定度。
    為了探討人工智慧神經網路於電力設備故障診斷,本文選用電力電容器、XLPE電力電纜與風力發電機齒輪箱作為研究對象,首先分別建構三種電力設備之不同故障瑕疵模型,其次利用經驗模態分析法與離散小波轉換來濾波處理檢測故障訊號所隱含雜訊成分,然後透過混沌同步檢測法與對稱點圖像分析擷取出具有意義特徵圖像,最後則以卷積神經網路,以及本文改良卷積神經網路進而發展的卷積機率神經網路與卷積可拓神經網路進行特徵圖像訓練與辨識。
    經由實測結果得知,本文提出的三種神經網路辨識方法均能夠檢測故障訊號變化,且準確地診斷出電力設備故障類型,其中電力電容器故障診斷採用卷積可拓神經網路與卷積機率神經網路辨識方法之總辨識準確率皆高達98.33%,在雜訊容錯能力總辨識準確率可達95%以上,XLPE電力電纜與風力發電機齒輪箱故障診斷採用卷積機率神經網路辨識方法之總辨識準確率分別可達97.14%與98.89%,在雜訊容錯能力總辨識準確率分別可達96%與97.63%以上,證實本文所創建卷積機率神經網路與卷積可拓神經網路之辨識準確率與抗雜訊容錯能力相較於卷積神經網路更加出色表現,未來亦可延伸運用於其他電力設備故障診斷與朝向硬體電路實現電力設備故障診斷分析儀表。


    In recent years, there has been an active promotion of smart manufacturing and Industry 4.0, enhancing the widespread application of artificial intelligence technology in every aspect of the power system. This has led to a growing demand for digitization, intelligence, and predictability in the field of power apparatus fault diagnosis. By collecting operational data from apparatus and leveraging artificial intelligence technology, it becomes possible to rapidly and accurately identify various types of faults in power apparatus. This allows for better monitoring of the power system's operational status and early detection of signs of issues in specific apparatus. Timely maintenance and part replacement can then be carried out to prevent unexpected incidents. Therefore, the application of artificial intelligence technology in power apparatus for fault prediction and diagnosis contributes to improving the efficiency of power system operations and the stability of power supply.
    To explore the application of artificial intelligence neural networks in the diagnosis of power apparatus faults, this paper selects power capacitors, XLPE power cables, and wind turbine gearbox gears as the research subjects. Firstly, distinct fault models for these three types of power apparatus are constructed. Subsequently, the empirical mode decomposition (EMD) analysis and discrete wavelet transform (DWT) are used to filter and process the fault signals, removing hidden noise. Then, meaningful feature images are extracted using chaotic synchronization detection and symmetrized dot pattern (SDP). Finally, convolutional neural network (CNN), along with the convolutional probabilistic neural network (CPNN) and convolutional extension neural network (CENN) developed in this paper as enhancements to the original convolutional neural network, are employed for the training and recognition of feature images.
    Based on the experimental results, it is revealed that the three neural network recognition methods proposed in this paper can effectively detect variations in fault signals and accurately diagnose the types of faults in power apparatus. Specifically, for the fault diagnosis of power capacitor, the recognition methods using CENN and CPNN achieve a remarkable overall recognition accuracy of 98.33%, with a fault tolerance accuracy exceeding 95%. For the fault diagnosis of XLPE power cable and wind turbine gearbox, the recognition method using CPNN achieves overall recognition accuracies of 97.14% and 98.89%, respectively, with fault tolerance accuracies exceeding 96% and 97.63%.
    These findings validate that the recognition accuracy and noise tolerance of the convolutional probabilistic neural network and convolutional extension neural network created in this paper outperform those of the traditional convolutional neural network. In the future, these models can be further applied to the diagnosis of faults in other power apparatus and extended towards the implementation of hardware circuits for power apparatus fault diagnosis analysis instruments.

    中文摘要 I ABSTRACT III 誌  謝 V 目  錄 VI 圖 目 錄 IX 表 目 錄 XIII 第一章 緒  論 1 1.1 研究背景與動機 1 1.2 研究方法 3 1.3 文獻探討 5 1.4 章節概要 9 第二章 故障診斷演算法理論 11 2.1 前言 11 2.2 經驗模態分解法 11 2.3 離散小波轉換 13 2.3.1 最佳母小波函數選擇 15 2.3.2 解析階層數選擇 16 2.3.3 門檻規則設定與訊號濾波 17 2.4 混沌同步檢測法 18 2.4.1 Lorenz混沌系統 20 2.4.2 Chen-Lee混沌系統 22 2.5 對稱點圖像分析 24 2.6 卷積神經網路 26 2.6.1 卷積層 27 2.6.2 池化層 28 2.6.3 全連接層 29 2.7 卷積機率神經網路 30 2.8 卷積可拓神經網路 34 2.9 本章結論 40 第三章 故障診斷設備架構 41 3.1 前言 41 3.2 電力電容器 41 3.2.1 電力電容器瑕疵建構 42 3.2.2 自製檢測電路設計 44 3.2.3 電力電容器充電諧波電流訊號擷取 44 3.3 XLPE電力電纜 46 3.3.1 電力電纜瑕疵建構 47 3.3.2 電力電纜局部放電訊號擷取 51 3.4 風力發電機齒輪箱 53 3.4.1 風力發電機齒輪箱故障建構 53 3.4.2 風力發電機齒輪箱故障訊號擷取 57 3.5 本章結論 58 第四章 電力電容器故障診斷實測結果與分析 60 4.1 前言 60 4.2 電力電容器實測結果與分析 60 4.2.1 實際訊號檢測與特徵圖像擷取 62 4.2.2 各種故障診斷辨識方法之結果與分析 69 4.2.3 故障診斷結果性能比較 77 4.3 本章結論 79 第五章 XLPE電力電纜故障診斷實測結果與分析 80 5.1 前言 80 5.2 電力電纜實測結果與分析 80 5.2.1 實際訊號檢測與特徵圖像擷取 82 5.2.2 各種故障診斷辨識方法之結果與分析 92 5.2.3 故障診斷結果性能比較 100 5.3 本章結論 102 第六章 風力發電系統齒輪箱故障診斷實測結果與分析 104 6.1 前言 104 6.2 風力發電機齒輪箱實測結果與分析 104 6.2.1 實際訊號檢測與特徵圖像擷取 106 6.2.2 各種故障診斷辨識方法之結果與分析 116 6.2.3 故障診斷結果性能比較 129 6.3 本章結論 132 第七章 結論與未來展望 133 7.1 研究結論 133 7.2 未來展望 134 參考文獻 136

    [1] Y. Bengio, A. Courville and P. Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 8, pp. 1798-1828, 2013.
    [2] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, Vol. 61, pp. 85-117, 2015.
    [3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, Vol.521, pp. 436-444, 2015.
    [4] P. Lertwanitrot and A. Ngaopitakkul, “Application of Magnitude and Phase Angle to Boundary Area-Based Algorithm for Unbalance Relay Protection Scheme in 115-kV Capacitor Bank,” IEEE Access, Vol. 9, pp. 35709-35717, 2021.
    [5] P. Chiradeja and A. Ngaopitakkul, “Analyzing the Characteristics of Faults in a Transmission Line and High Voltage Capacitor Banks in a 115-kV-Power System Using Discrete Wavelet Transform,” IEEE Access, Vol. 10, pp. 86765-86781, 2022.
    [6] B. Gustavsen, M. Høyer-Hansen, M. Hatlo and S. Midttveit, “Voltages and AC Corrosion on Metallic Tubes in Umbilical Cables Caused by Magnetic Induction From Power Cable Charging Currents,” IEEE Transactions on Power Delivery, Vol. 34, No. 2, pp. 596-605, 2019.
    [7] K. Kopsidas and S. Liu, “Power Network Reliability Framework for Integrating Cable Design and Ageing,” IEEE Transactions on Power Systems, Vol. 33, No. 2, pp. 1521-1532, 2018.
    [8] P. Wang et al., “Dynamic Thermal Analysis of High-Voltage Power Cable Insulation for Cable Dynamic Thermal Rating,” IEEE Access, Vol. 7, pp. 56095-56106, 2019.
    [9] A. B. J. M. Driessen, J. van Duivenbode and P. A. A. F. Wouters, “Partial discharge detection for characterizing cable insulation under low and medium vacuum conditions,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, No. 1, pp. 306-315, 2018.
    [10] S. D. Ahmed, F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman and I. M. El-Amin, “Grid Integration Challenges of Wind Energy: A Review,” IEEE Access, Vol. 8, pp. 10857-10878, 2020.
    [11] S. Khazaei, M. Ehsan, S. Soleymani and H. Mohammadnezhad-Shourkaei, “A high-accuracy hybrid method for short-term wind power forecasting”, Energy, Vol. 238, 2022.
    [12] M. Rezamand, M. Kordestani, R. Carriveau, D. S. . -K. Ting, M. E. Orchard and M. Saif, “Critical Wind Turbine Components Prognostics: A Comprehensive Review,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 12, pp. 9306-9328, 2020.
    [13] Z. Liu, X. Wang and L. Zhang, “Fault Diagnosis of Industrial Wind Turbine Blade Bearing Using Acoustic Emission Analysis,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 9, pp. 6630-6639, 2020.
    [14] H. Badihi, Y. Zhang, B. Jiang, P. Pillay and S. Rakheja, “A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis,” Proceedings of the IEEE, Vol. 110, No. 6, pp. 754-806, 2022.
    [15] C. Feng, J. Daozhuo, F. Yu and G. Hongjie, “Research on Power Capacitor Internal Fault Criterion,” 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications, Hunan, 2014, pp. 841-844.
    [16] G. Wu, L. Zhou, X. Zhang, S. Bian, H. Ran and C. Yu, “Study on the Failure Factors of Composite Insulation in High-Voltage Storage Capacitors,” IEEE Transactions on Plasma Science, Vol. 38, No. 2, pp. 186-193, 2010.
    [17] Y. Liang, D. Wang and D. Liu, “Distribution and influence factors of electric field in high-voltage power capacitor,” IET Science, Measurement & Technology, Vol. 9, No. 6, pp. 702-708, 2015.
    [18] Y. Liang, D. Wang, L. Gao and D. Liu, “Calculation of Temperature Field in Power Capacitor,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, pp. 2788-2794, 2015.
    [19] Z. Wang, Z. Xu, L. Zhao and S. Han, “Power Capacitor Temperature Measurement System Using FBG Sensors and Its Validation,” IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 2, pp. 449-458, 2018.
    [20] C. Guillermin, O. Dujeu and J. Lupin, “Metallized Film Power Capacitors End-of-Life Study Through Monitored Destruction Tests,” IEEE Transactions on Power Delivery, Vol. 28, No. 1, pp. 368-375, 2013.
    [21] M. H. Wang, S. D. Lu, M. L. Huang, H. W. Sian, C. C. Hsieh and S. E. Wei, “Hybrid methodology based on extension theory for partial discharge fault diagnosis of power capacitors,” IEICE Electronics Express, Vol. 17, No. 18, pp. 1-6, 2020.
    [22] R. Bartnikas, “Partial discharges. Their mechanism, detection and measurement,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 5, pp. 763-808, 2002.
    [23] Z. Li, Z. Zhang, T. Han, B. Du, J. Li and L. Zhang, “Effect of Harmonic Voltage On Partial Discharge Properties of LN2/PPLP Insulation for HTS DC Cable,” IEEE Transactions on Applied Superconductivity, Vol. 31, No. 8, pp. 1-4, 2021.
    [24] A. R. Mor, P. H. F. Morshuis, P. Llovera, V. Fuster and A. Quijano, “Localization techniques of partial discharges at cable ends in off-line single-sided partial discharge cable measurements,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 428-434, 2016.
    [25] Z. Liu, X. Liu, Z. Zhang, W. Zhang and J. Yao, “Research on Optical Fiber Sensor Localization Based on the Partial Discharge Ultrasonic Characteristics in Long-Distance XLPE Cables,” IEEE Access, Vol. 8, pp. 184744-184751, 2020.
    [26] W. Pan, K. Zhao, C. Xie, X. Li, J. Chen and L. Hu, “Distributed Online Monitoring Method and Application of Cable Partial Discharge Based on φ-OTDR,” IEEE Access, Vol. 7, pp. 144444-144450, 2019.
    [27] G. Robles, M. Shafiq and J. M. Martínez-Tarifa, “Multiple Partial Discharge Source Localization in Power Cables Through Power Spectral Separation and Time-Domain Reflectometry,” IEEE Transactions on Instrumentation and Measurement, Vol. 68, No. 12, pp. 4703-4711, 2019.
    [28] M. Mahdipour, A. Akbari, P. Werle and H. Borsi, “Partial Discharge Localization on Power Cables Using On-Line Transfer Function,” IEEE Transactions on Power Delivery, Vol. 34, No. 4, pp. 1490-1498, 2019.
    [29] J. Jiang et al., “A Capacitive Strip Sensor for Detecting Partial Discharge in 110-kV XLPE Cable Joints,” IEEE Sensors Journal, Vol. 18, No. 17, pp. 7122-7129, 2018.
    [30] F. Gu, H. Yau and H. Chen, “Application of Chaos Synchronization Technique and Pattern Clustering for Diagnosis Analysis of Partial Discharge in Power Cables,” IEEE Access, Vol. 7, pp. 76185-76193, 2019.
    [31] D. Oh, H. Kim and B. Lee, “Novel Diagnostic Method of DC Void Discharge in High Temperature Superconducting Cable Based on Pulse Sequence Analysis,” IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, pp. 1-5, 2020.
    [32] M. -H. Wang, S. -D. Lu and R. -M. Liao, “Fault Diagnosis for Power Cables Based on Convolutional Neural Network With Chaotic System and Discrete Wavelet Transform,” IEEE Transactions on Power Delivery, Vol. 37, No. 1, pp. 582-590, 2022.
    [33] F. Cheng, L. Qu, W. Qiao, C. Wei and L. Hao, “Fault Diagnosis of Wind Turbine Gearboxes Based on DFIG Stator Current Envelope Analysis,” IEEE Transactions on Sustainable Energy, Vol. 10, No. 3, pp. 1044-1053, 2019.
    [34] Y. Peng, W. Qiao, F. Cheng and L. Qu, “Wind Turbine Drivetrain Gearbox Fault Diagnosis Using Information Fusion on Vibration and Current Signals,” IEEE Transactions on Instrumentation and Measurement, Vol. 70, pp. 1-11, 2021.
    [35] G. Jiang, H. He, J. Yan and P. Xie, “Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox,” IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, pp. 3196-3207, 2019.
    [36] L. Wang, G. Cai, J. Wang, X. Jiang and Z. Zhu, “Dual-Enhanced Sparse Decomposition for Wind Turbine Gearbox Fault Diagnosis,” IEEE Transactions on Instrumentation and Measurement, Vol. 68, No. 2, pp. 450-461, 2019.
    [37] Q. He, J. Zhao, G. Jiang and P. Xie, “An Unsupervised Multiview Sparse Filtering Approach for Current-Based Wind Turbine Gearbox Fault Diagnosis,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 8, pp. 5569-5578, 2020.
    [38] L. Lu, Y. He, Y. Ruan and W. Yuan, “Wind Turbine Planetary Gearbox Condition Monitoring Method Based on Wireless Sensor and Deep Learning Approach,” IEEE Transactions on Instrumentation and Measurement, Vol. 70, No. 3503016, pp. 1-16, 2021.
    [39] Y. Su, L. Meng, X. Kong, T. Xu, X. Lan and Y. Li, “Generative Adversarial Networks for Gearbox of Wind Turbine With Unbalanced Data Sets in Fault Diagnosis,” IEEE Sensors Journal, Vol. 22, No. 13, pp. 13285-13298, 2022.
    [40] W. Du, Z. Guo, C. Li, X. Gong and Z. Pu, “From Anomaly Detection to Novel Fault Discrimination for Wind Turbine Gearboxes With a Sparse Isolation Encoding Forest,” IEEE Transactions on Instrumentation and Measurement, Vol. 71, No. 2512710, pp. 1-10, 2022.
    [41] H. Malik and S. Mishra, “Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using TurbSim, FAST and Simulink,” IET Renewable Power Generation, Vol. 11, No. 6, pp. 889-902, 2017.
    [42] A. Priya, P. Yadav, S. Jain and V. Bajaj, “Efficient method for classification of alcoholic and normal EEG signals using EMD,” The Journal of Engineering, Vol. 2018, No. 3, pp. 166-172, 2018.
    [43] L. Satish and B. Nazneen, “Wavelet-based denoising of partial discharge signals buried in excessive noise and interference,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 2, pp. 354-367, 2003.
    [44] L. Hao et al., “Discrimination of multiple PD sources using wavelet decomposition and principal component analysis,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 5, pp. 1702-1711, 2011.
    [45] T. Boczar and D. Zmarzly, “Application of wavelet analysis to acoustic emission pulses generated by partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, No. 3, pp. 433-449, 2004.
    [46] H. d. O. Mota, F. H. Vasconcelos, and C. L. de Castro, “A comparison of cycle spinning versus stationary wavelet transform for the extraction of features of partial discharge signals,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 2, pp. 1106-1118, 2016.
    [47] Fusheng Zhang, Zhongxing Geng, and Wei Yuan, “The algorithm of interpolating windowed FFT for harmonic analysis of electric power system,” IEEE Transactions on Power Delivery, Vol. 16, No. 2, pp. 160-164, 2001.
    [48] H. Wen, Z. Teng, Y. Wang, B. Zeng, and X. Hu, “Simple Interpolated FFT Algorithm Based on Minimize Sidelobe Windows for Power-Harmonic Analysis,” IEEE Transactions on Power Electronics, Vol. 26, No. 9, pp. 2570-2579, 2011.
    [49] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions of the American Institute of Electrical Engineers, Vol. 4, No. 2, pp. 617-644, 1928.
    [50] D. R. Prado, M. Arrebola, M. R. Pino and F. Las-Heras, “An Efficient Calculation of the Far Field Radiated by Non-Uniformly Sampled Planar Fields Complying Nyquist Theorem,” IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, pp. 862-865, 2015.
    [51] R. Hussein, K. B. Shaban, and A. H. El-Hag, “Energy Conservation-Based Thresholding for Effective Wavelet Denoising of Partial Discharge Signals,” IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 813-822, 2016.
    [52] M. Srivastava, C. L. Anderson, and J. H. Freed, “A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds,” IEEE Access, Vol. 4, pp. 3862-3877, 2016.
    [53] F. -C. Gu, H. -T. Yau and H. -C. Chen, “Application of Chaos Synchronization Technique and Pattern Clustering for Diagnosis Analysis of Partial Discharge in Power Cables,” IEEE Access, Vol. 7, pp. 76185-76193, 2019.
    [54] H. Zhao, L. Kwiat, K. A. Kwiat, C. A. Kamhoua and L. Njilla, “Applying Chaos Theory for Runtime Hardware Trojan Monitoring and Detection,” IEEE Transactions on Dependable and Secure Computing, Vol. 17, No. 4, pp. 716-729, 2020.
    [55] L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems”, Physical Review Letters, Vol. 64, No. 8, pp. 821-824, 1990.
    [56] E. N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences, Vol. 20, pp. 130-141, 1963.
    [57] H. K. Chen and C. I. Lee, “Anti-control of chaos in rigid body motion,” Chaos, Solitons and Fractals, Vol. 21, pp. 957-965, 2004.
    [58] H. T. Yau, C. C. Wang, C. T. Hsieh, and S. Y. Wu, “Fractional Order Sprott Chaos Synchronisation-Based Real-Time Extension Power Quality Detection Method,” IET Generation, Transmission & Distribution, Vol. 9, No. 16, pp. 2775-2781, 2015.
    [59] M. H. Wang, M. L. Huang, and K. J. Liou, “Islanding Detection Method for Grid Connected Photovoltaic Systems,” IET Renewable Power Generation, Vol. 9, No. 6, pp. 700-709, 2015.
    [60] B. L. Jian, C. C. Wang, J. Y. Chang, X. Y. Su, and H. T. Yau, “Machine Tool Chatter Identification Based on Dynamic Errors of Different Self-Synchronized Chaotic Systems of Various Fractional Orders,” IEEE Access, Vol. 7, pp. 67278-67286, 2019.
    [61] T. Shirai, K. Shibata, A. Takahashi, K. Mori, N. Kasashima and Y. Ueno, “Method for detecting faults in FFUs using SDP based on audio signal analysis,” Proceedings 1996 IEEE Conference on Emerging Technologies and Factory Automation. ETFA '96, 1996, pp. 243-247 Vol.1.
    [62] H. Wang, J. Xu, R. Yan and R. X. Gao, “A New Intelligent Bearing Fault Diagnosis Method Using SDP Representation and SE-CNN,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 5, pp. 2377-2389, 2020.
    [63] J. Yang and R. Yan, “A Multidimensional Feature Extraction and Selection Method for ECG Arrhythmias Classification,” IEEE Sensors Journal, Vol. 21, No. 13, pp. 14180-14190, 2021.
    [64] Z. Long et al., “Motor Fault Diagnosis Based on Scale Invariant Image Features,” IEEE Transactions on Industrial Informatics, Vol. 18, No. 3, pp. 1605-1617, 2022.
    [65] C. Ding and D. Tao, “Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, No. 4, pp. 1002-1014, 2018.
    [66] M. Z. Khan, S. Harous, S. U. Hassan, M. U. Ghani Khan, R. Iqbal and S. Mumtaz, “Deep Unified Model For Face Recognition Based on Convolution Neural Network and Edge Computing,” IEEE Access, Vol. 7, pp. 72622-72633, 2019.
    [67] Y. R. Choi and R. M. Kil, “Face Video Retrieval Based on the Deep CNN With RBF Loss,” IEEE Transactions on Image Processing, Vol. 30, pp. 1015-1029, 2021.
    [68] C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal and D. Rueckert, “Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction,” IEEE Transactions on Medical Imaging, Vol. 38, No. 1, pp. 280-290, 2019.
    [69] K. Gong et al., “Iterative PET Image Reconstruction Using Convolutional Neural Network Representation,” IEEE Transactions on Medical Imaging, Vol. 38, No. 3, pp. 675-685, 2019.
    [70] H. Salehinejad, E. Colak, T. Dowdell, J. Barfett and S. Valaee, “Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks,” IEEE Transactions on Medical Imaging, Vol. 38, No. 5, pp. 1197-1206, 2019.
    [71] T. Hassanzadeh, D. Essam and R. Sarker, “2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation,” IEEE Transactions on Medical Imaging, Vol. 40, No. 2, pp. 712-721, 2021.
    [72] G. Jiang, H. He, J. Yan and P. Xie, “Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox,” IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, pp. 3196-3207, 2019.
    [73] X. Wang, G, Huang, C. Ma, W. Tian, J. Gao, “Convolutional neural network applied to specific emitter identification based on pulse waveform images,” IET Radar, Sonar & Navigation, Vol. 14, No. 5, pp. 728–735, 2020.
    [74] W. Yu and C. Zhao, “Broad Convolutional Neural Network Based Industrial Process Fault Diagnosis With Incremental Learning Capability,” IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, pp. 5081-5091, 2020.
    [75] R. Magar, L. Ghule, J. Li, Y. Zhao and A. B. Farimani, “FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification,” IEEE Access, Vol. 9, pp. 25189-25199, 2021.
    [76] A. Heinecke, J. Ho and W. Hwang, “Refinement and Universal Approximation via Sparsely Connected ReLU Convolution Nets,” IEEE Signal Processing Letters, Vol. 27, pp. 1175-1179, 2020.
    [77] Y. Yu, K. Adu, N. Tashi, P. Anokye, X. Wang and M. A. Ayidzoe, “RMAF: Relu-Memristor-Like Activation Function for Deep Learning,” IEEE Access, Vol. 8, pp. 72727-72741, 2020.
    [78] G. N. Maria Cristina, V. G. Cruz Sanchez, O. O. Vergara Villegas, M. Nandayapa, H. d. J. Ochoa Dominguez and J. H. Sossa Azuela, “Study of the Effect of Combining Activation Functions in a Convolutional Neural Network,” IEEE Latin America Transactions, Vol. 19, No. 5, pp. 844-852, 2021.
    [79] D.F. Specht, “Probabilistic neural networks for classification, mapping, or associative memory,” IEEE 1988 International Conference on Neural Networks, 1988, pp. 525-532 Vol.1.
    [80] D. F. Specht, “Probabilistic neural networks”, Neural Netw., Vol. 3, No. 1, pp. 109-118, 1990.
    [81] Zheng Rong Yang, M. Zwolinski, C. D. Chalk and A. C. Williams, “Applying a robust heteroscedastic probabilistic neural network to analog fault detection and classification,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 1, pp. 142-151, 2000.
    [82] S. Mishra, C. N. Bhende and B. K. Panigrahi, “Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network,” IEEE Transactions on Power Delivery, Vol. 23, No. 1, pp. 280-287, 2008.
    [83] J. Ding, D. Xiao and X. Li, “Gear Fault Diagnosis Based on Genetic Mutation Particle Swarm Optimization VMD and Probabilistic Neural Network Algorithm,” IEEE Access, Vol. 8, pp. 18456-18474, 2020.
    [84] M. H. Wang and C. P. Hung, “Extension neural network and its applications”, Neural Netw., Vol. 16, pp. 779-784, 2003.
    [85] Mang-Hui Wang, “Partial discharge pattern recognition of current transformers using an ENN,” IEEE Transactions on Power Delivery, Vol. 20, no. 3, pp. 1984-1990, 2005.
    [86] M. H. Wang, S. D. Lu, M. J. Hsieh, “Application of Extension Neural Network Algorithm and Chaos Synchronization Detection Method to Partial Discharge Diagnosis of Power Capacitor,” Measurement, Vol. 129, pp.227-235, 2018.
    [87] E. Dong, H. Jian, S. Du and C. Dong, “Infrared Target Extraction Based on Immune Extension Neural Network,” IEEE Access, Vol. 8, pp. 47569-47579, 2020.
    [88] M. H. Wang, C. C. Hsieh, S. D. Lu, “Fault Diagnosis of Wind Turbine Blades Based on Chaotic System and Extension Neural Network,” Sensors and Materials, Vol. 33, No. 8, pp.2879-2895, 2021.
    [89] S. D. Lu, S. E. Wei, M. H. Wang, H. W. Sian, and C. C. Kuo, “Hybrid Methodology Based on Extension Neural Network for Fault Diagnosis of Photovoltaic Module,” Sensors and Materials, Vol. 33, No. 8, pp.2925-2941, 2021.
    [90] G. Ma, C. Li, X. Chen, J. Jiang, Z. Ge and W. Chang, “Numerical sensor design for partial discharge detection on power cable joint,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 4, pp. 2311-2319, 2015.
    [91] R. P. Nair and S. B. Vishwanath, “Analysis of partial discharge sources in stator insulation system using variable excitation frequency,” IET Science, Measurement & Technology, Vol. 13, No. 6, pp. 922-930, 2019.
    [92] B. Qi, Z. Wei, C. Li, Y. Gao and X. Zhang, “Influences of Different Ratios of AC-DC Combined Voltage on Internal Gas Cavity Discharge in Oil-Pressboard Insulation,” IEEE Transactions on Power Delivery, Vol. 31, No. 3, pp. 1026-1033, 2016.
    [93] J. Du, W. Chen, L. Cui, Z. Zhang and S. Tenbohlen, “Investigation on the propagation characteristics of PD-induced electromagnetic waves in an actual 110 kV power transformer and its simulation results,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, No. 5, pp. 1941-1948, 2018.
    [94] J. Fu, J. Chu, P. Guo and Z. Chen, “Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model,” IEEE Access, Vol. 7, pp. 57078-57087, 2019.

    無法下載圖示
    全文公開日期 2029/01/24 (校外網路)
    全文公開日期 2029/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE