簡易檢索 / 詳目顯示

研究生: 陳勇全
Yung-chuan Chen
論文名稱: 不同電荷儲存層之奈米晶記憶體研究
The studey of nanocrystal memory with different charge storage layers
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 黃柏仁
Bohr-ran Huang
何清華
Ching-hwa Ho
薛人愷
Ren-ken Shiue
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 浮動閘極奈米晶記憶體電荷儲存層持久性
外文關鍵詞: floating gate, nanocrystal memory, charge storage layer, retention time
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,傳統浮動閘極記憶體面臨尺寸微縮的挑戰,例如在穿隧氧化層之非揮發性記憶體在一個很長的操作期間,容易地產生漏電流路徑,因此,分散的儲存電荷之奈米晶結構是下一代非揮發性記憶體元件結構。
    本實驗以濺鍍法製備Ni薄膜作為電荷儲存層之奈米晶記憶體,於退火條件900℃/3min/N2後進行電特性量測發現,施加偏壓±10V可得記憶視窗2.37V及儲存電荷密度7.36×1011cm-2,在持久性量測發現施加5V應力經過104秒其記憶視窗為1.06V,而電荷損失率約25.35%,在施予-20V的閘極電壓下,漏電流密度為0.439A/cm2,經XPS分析發現,高溫退火導致Ni擴散到阻止氧化層中並形成介金屬化合物Al3Ni。
    另一新穎元素Sn作為電荷儲存層之非揮發性記憶體亦以濺鍍法製備,於退火140℃/30min/Ar後進行電特性量測,發現施加偏壓±8V可得記憶視窗1.46V和儲存電荷密度3.10×1011cm-2,在持久性量測發現施加5V應力經過104秒其記憶視窗為0.81V,而電荷損失率約38.17%,在施予-20V的閘極電壓下,漏電流密度為1.11×10-2A/cm2,經XPS分析發現,Sn沒有擴散現象發生,但有SnO相出現。


    Recently, the conventional floating gate memory faces a challenge of scaling down, such as the thinner tunneling oxide suffers from leakage path generation easily after a long duration operation. Therefore, nanocrystal (NC) structure with distributed storage elements was proposed as the next generation structure for nonvolatile memory devices.
    The nickel film as a charge storage layer for nanocrystal memory was prepared by sputtering method. Device sample subjected to 900℃ annealing for 3min in N2 atmosphere exhibited a significant hysteresis memory window shift of 2.37V and charge density of 7.36×1011cm-2 after 10V voltage sweep. It was also found a memory window shift about 1.06V and the charge loss about 25.35% in the sample after 104sec retention time at a 5V voltage stress. The leakage current obtained from the I-V measurement was 0.439A/cm2 at the gate voltage of -20V. XPS analysis indicated that annealing induced the nickel diffusion to blockage layer and fromed intermetallic compound of Al3Ni.
    Tin was the other novel element to be used as the charge storage layer for nonvolatile memory. In this study, the tin layer was deposited by sputtering. Device sample subjected to 140℃ annealing for 30min in Ar atmosphere exhibited a significant hysteresis memory window shift of 1.46V and the charge density of 3.10×1011cm-2 after 8V voltage sweep. Under the retention tests, the memory window became 0.81V and the charge loss rate was 38.17% after suffering a 5V stress for 104sec. The leakage current density obtained from the J-E measurement was 1.11×10-2A/cm2 at the gate voltage of -20V. From the result of XPS, it is evident that tin did not diffuse to the blockage layer and existed as SnO in nanocrystal memory.

    摘要 IV Abstract VI 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XX 第一章 緒論 1 1-1前言與簡介 1 1-2非揮發性記憶體特性 2 1-3非揮發性記憶體分類 3 1-4快閃記憶體種類結構與介紹 4 1-5研究動機與目的 8 第二章 基礎理論與文獻回顧 10 2-1 奈米晶記憶體之操作原理 10 2-1-1 寫入原理 10 2-1-2 抹除原理 11 2-2 奈米晶記憶體之操作機制 11 2-2-1 F-N穿隧效應(Fowler-Nordhein Tunneling) 11 2-2-2 通道熱電子注入(Channel Hot electron Injection) 13 2-2-3 直接穿隧(Direct Tunneling) 13 2-3 半導體奈米晶記憶體之理論 14 2-4 金屬奈米晶記憶體之製備方式 20 2-4-1 電子束蒸鍍法(Electron beam evaporation) 20 2-4-2 共鍍(Co-sputtering) 22 2-4-3 射頻磁控濺鍍(Radio-Frequency Magnetron Sputter) 24 2-4-4 自組裝奈米點沉積(Self-assembled nanodot deposition,SAND) 26 2-4-5 DC直流濺鍍法(Direct Current Sputter) 28 2-4-6 原子層沉積法(Atomic Layer Deposition,ALD) 30 2-4-7 化學氣相沉積法(Chemical vapor deposition,CVD) 31 2-4-8溶膠-凝膠法(Sol-Gel process) 32 2-5 其它金屬材料的奈米晶記憶體 33 2-5-1 Tb2TiO5奈米晶記憶體 33 2-5-2 Cr奈米晶記憶體 34 2-6 MOS元件的理論基礎 35 2-6-1聚積區(Accumulation) 36 2-6-2空乏區(Depletion) 36 2-6-3反轉區(Inversion) 37 2-7 量子現象 39 2-7-1 量子侷限效應(Quantum Confinement Effect) 39 2-7-2 庫倫阻塞效應(Coulomb Blockade Effect) 40 第三章 實驗方法與步驟 41 3-1 奈米晶記憶體之材料與系統結構 41 3-2 實驗系統說明 41 3-2-1 DC直流磁控濺鍍系統 41 3-2-2 高溫管型爐 43 3-2-3 RF射頻磁控濺鍍系統 43 3-3 實驗流程 44 3-3-1 基板清洗 44 3-3-2 高溫熱成長SiO2-穿隧氧化層 44 3-3-3 製備電荷儲存層 45 3-3-4 製備阻止氧化層 46 3-3-5 退火熱處理 47 3-3-6 電極沉積-鋁電極 47 3-3 分析儀器 48 3-3-1 場發射掃描式電子顯微鏡(FE-SEM) 48 3-3-2 電性量測 49 3-3-3 XPS化學分析電子能譜儀(Electron spectroscopy of chemical analysis) 50 第四章 實驗結果與討論 58 4-1 電特性量測分析 58 4-1-1 MOS電容之高頻C-V量測 59 4-1-2 MOS電容之I-V量測分析 68 4-1-3 持久性量測(retention time characteristics) 70 4-2 薄膜表面形態分析與薄膜厚度觀察 71 4-3 薄膜表面化學鍵結及薄膜成分鑑定 73 第五章 結論與未來建議研究方向 101 5-1 結論 101 5-2 未來建議研究方向 102 第六章 参考文獻 103

    TRI 產業專題報告-11,「席捲記憶體市場之未來新霸主-快閃記憶體」,拓墣產業研究所,2004六月
    D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech. J., Vol. 46, pp. 1283( 1967)
    施敏、黃調元,「半導體元件物理與製作技術」, 國立交通大學出版社(2002)
    Chungho Lee, Jami Meteer, Venkat Narayanan, and Edwin C. Kan,“Self-Assembly of Metal Nanocrystals on Ultrathin Oxide for Nonvolatile Memory Applications”, Journal of Electronic Materials, Vol. 34, No. 1(2005)
    Y. Ma, T. Yasuda, and G. Lucovsky,“Ultrathin device quality oxide-nitride-oxide heterostructure formed by remote plasma enhanced chemical vapor deposition”, Appl. Phys. Lett. Vol. 64, No. 17(1994)
    W. L. Warren, D.M. Fleetwood, J.R. Schwank, M.R. Shaneyfelt, B.L. Draper, P.S. Winokur, and M.G. Knoll, “Protonic Nonvolatile Field Effect Transistor Memorues In Si/SiO2/Si Structures”, IEEE Trans. on Nuclear Science, Vol. 44, pp. 1789-1798(1997)
    黃一桀,「新穎的SONOS儲存單元製程之研究」,清華大學,碩士論文(2007)
    Mansun Chan, Fariborz Assaderaghi, Stephen A. Parke, Chenming Hu, and Ping K. Ko,“Recessed-Channel Structure for Fabricating Ultrathin SOI MOSFET with Low Series Resistance”IEEE Electron Device Letters, Vol. 15, NO. 1(1994)
    Jin Lu, Ting-Chang Chang, Yu-Ting Chen, Jheng-Lie Huang, Po-Chun Yang, Shih-Ching Chen, Hui-Chun Huang, Der-Shin Gan, New-Jin Ho, Yi Shi, and Ann-Kuo Chu,“Enhanced retention characteristic of NiSi2/SiNx compound nanocrystal memory”, Appl. Phys. Lett. 96, 262107(2010)
    H. I. Hanafi, S. Tiwari, and I. Khan,“Fast and Long Retention-Time Nano-Crystal Memory”, IEEE Trans. Electron Devices 43, 1553(1996)
    Z. Tan, S. K. Samanta, W. J. Yoo, and S. Lee,“Self-assembly of Ni nanocrystals on HfO2 and N-assisted Ni confinement for nonvolatile memory application”, Appl. Phys. Lett. 86, 013107(2005)
    張鼎張、陳世青、涂峻豪、陳緯仁,「奈米製造技術在下世代非揮發性記憶體上的運用」, 奈米通訊,第十五券,第一期(2008)
    吳榮軒,「鍺浮點記憶體之研製」, 中央大學,碩士論文(2006)
    G. Ammendola, M. Vulpio, M. Bileci, N. Nastasi, Gerardi, G. Renna, I. Crupi, G. Nicotra, and S. Lombardo“, J. Vac. Sci. Technol. B, Vol. 20(2002)
    Ravishankar Sundararaman, Sandip Tiwari,“A universal semiempirical model for the Fowler-Nordheim programming of charge trapping devices”, Appl. Phys. Lett. 96, 023502(2010)
    李思儒,「使用含量子效應的等效電路模型模擬半導體元件之特性」,中央大學,博士論文(2007)
    陳彥州,「快閃記憶體寫入暨抹除方法改善與模擬分析」, 清華大學,碩士論文(2005)
    游焜煌,「快閃記憶體電容偶合校應模擬研究」,清華大學,碩士論文(2008)
    曾駿逸,「白金奈米晶粒於金屬─氧化物─半導體結構中對非揮發性懸浮閘極記憶體應用之研究」,清華大學,博士論文(2004)
    Hai Liu, Domingo A. Ferrer, Fahmida Ferdousi, and Sanjay K. Banerjee,“Nonvolatile memory with Co-SiO2 core-shell nanocrystals a charge storage nodes in floating gate”, Appl. Phys. Lett. 95, 203112(2009)
    王聖裕,「High-k材料Ba1-xSrxTiO3應用於閘極氧化層對白金奈米晶記憶體電性之影響」,清華大學,碩士論文(2006)
    游易青,「High-k材料應用於閘極氧化層對奈米晶記憶體電性之影響」,清華大學,碩士論文(2005)
    P F Lee, X B Lu, J Y Dai, H L W Chan, Emil Jelenkovic and K Y Tong,“Memory effect and retention property of Ge nanocrystal embedded Hf-aluminate high-k gate dielectroc”, Nanotechnology 17(2006) 1202-1206
    Seung Hui Hong, Min Choul Kim, Pil Seong Jeong, Suk-Ho Choi and Kyung Joong Kim,“Ge-nanodot multilayer nonvolatile memories”, Nanotechnology 19 (2008) 305203(4pp)
    P. H. Yeh, L. J. Chen, P. T. Liu, D. Y. Wang and T. C. Chang,“Metal nanocrystals as charge storage nodes for nonvolatile memory devices”, Electrochimica Acta 52 (2007) 2920-2926
    F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze and J. C. Lou,“Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application”, Appl. Phys. Lett. 90, 222104(2007)
    F. M. Yang, T.C. Chang, P.T. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze and J. C. Lou,“Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102(2007)
    Y. S. Jang and J. H. Yoon,“Memory Properties of Nickel Silicide Nanocrystal Layer for Possible Application to Nonvolatile Memory Devices”, IEEE Trans. Electron Devices, Vol. 56, NO. 12(2009)
    C. W. Hu, T. C. Chang, C. H. Tu, C. N. Chiang, C. C. Lin, Simon M. Sze and T. Y. Tseng,“NiSiGe nanocrystal for nonvolatile memory devices”, Appl. Phys. Lett. 94, 062102(2009)
    C. W. Hu, T. C. Chang, P. T. Liu, C. H. Tu, S. K. Lee, Simon M. Sze, C. Y. Chang, B. S. Chiou and T. Y. Tseng,“Formation of cobalt-silicide nanocrystals in Ge-doped dielectric layer for the application on nonvolatile memory”, Appl. Phys. Lett. 92, 152115(2008)
    J. Dufourcq, S. Bodar, G. Gay, D. Lafond, P. Mur, G. Molas, J. P. Nieto, L. Vandroux, L. Jodin, F. Gustavo, and Th. Baron, “High density platinum nanocrystals for non-volatile memory applications”, Appl. Phys. Lett. 92, 073102(2008)
    Y. S. Lo, K. C. Liu, J. Y. Wu, C. H. Hou and T. B. Wu,“Bandgap engineering of tunnel oxide with multistacked layers of Al2O3/HfO2/SiO2 for Au-nanocrystal memory application”, Appl. Phys. Lett. 93, 132907(2008)
    Y. S. Lo, K. C. Liu, C. W. Cheng, J. Y. Wu, C. H. Hou and T. B. Wu,“Field enhancement effect of nanocrystals in bandgap engineering of tunnel oxide for nonvolatile memory application”, Appl. Phys. Lett. 94, 082901(2009)
    Yanli Pei, Chengkuan Yin, Masahiko Nishijima, Toshiya Kojima, Takafumi Fukushima, Tetsu Tanaka and Mitsumasa Koyanagi,“Formation of high density tungsten nanodots embedded in silicon nitride for nonvolatile memory application”, Appl. Phys. Lett. 94, 063108(2009)
    Yanli Pei, Chengkuan Yin, Toshiya Kojima, Masahiko Nishijima, Takafumi Fukushima, Tetsu Tanaka and Mitsumasa Koyanagi,“Memory characteristics of metal-oxide-semiconductor capacitor with high density cobalt nanodots floating gate and HfO2 blocking dielectric”, Appl. Phys. Lett. 95, 033118(2009)
    W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu and C. Y. Chang,“Formation of stacked Ni silicide nanocrystals for nonvolatile memory application”, Appl. Phys. Lett. 90, 112108(2007)
    W. R. Chen, T. C. Chang, P. T. Liu, J. L. Yeh, C. H. Tu, J. C. Lou, C. F. Yeh and C. Y. Chang,“Nonvolatile memory characteristics of nickel-silicon-nitride nanocrystal”, Appl. Phys. Lett. 91, 082103(2007)
    D.R. Lide, CRC Handbook of Chemistry and Physics, 81st ed. (CRC, Boca Raton, FL, 2000), Vol. 81, p. 5-3
    V. Mikhelashvili, B. Meyler, S. Yoffis, J. Salzman, M. Garbrecht, T. Cohen-Hyams, W. D. Kaplan and G. Eisenstein,“A nonvolatile memory capacitor based on Au nanocrystals with HfO2 tunneling and blocking layers”, Appl. Phys. Lett. 95, 023104(2009)
    Heejung Park, Ara Kim, Chiyoung Lee, Jang-Sik Lee and Jaegab Lee,“Formation of Cu nanocrystal on 3-mercaptopropyltrimethoxysilane monolayer by pulsed iodine-assisted chemical vapor deposition for nonvolatile memory applications”, Appl. Phys. Lett. 94, 213508(2009)
    C. C. Wu, Y. J. Tsai, M. C. Chu, S. M. Yang, F. H. Ko, P. L. Lu, W. L. Yang and H. C. You,“Nanocrystallization and interfacial tension of sol-gel derived memory”, Appl. Phys. Lett. 92, 123111(2008)
    F. H. Ko, H. C. You and T. F. Lei,“Sol-gel-derived double-layered nanocrystal memory”, Appl. Phys. Lett. 89, 252111(2006)
    T. M. Pan, F. H. Chen and J. S. Jung,“A high-k Tb2TiO5 nanocrystal memory”, Appl. Phys. Lett. 96, 102904(2010)
    Augustin J. Hong, Chi-Chun Liu, Yong Wang, Jiyoung Kim, Faxian Xiu, Shengxiang Ji, Jin Zou, Paul F. Nealey and Kang L. Wang,“Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off”, Nano. Lett. 2010, 10, 224-229
    C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu, C. C. Tsai, L. T. chang, T. Y. Tseng, S. M. Sze, and C. Y. Chang,“Improved memory window for Ge nanocrystals embedded in SiON layer”, Appl. Phys. Lett. 89, 162105(2006)
    T. C. Chang, S. T. Yan, P. T. Liu, C. W. Chen, S. H. Liu, and S. M. Sze,“A Novel Approach of Fabricating Germanium Nanocrystals for Nonvolatile Memory Application”, Electrochemical and Solid-State Letters, 7(1) G17-G19(2004)
    黃偉迪,「濺鍍法製備硒化銅錫薄膜與其特性分析」,台灣科技大學,碩士論文(2009)
    林子超,「射頻磁控濺鍍法製備閘極氧化層之鈦-鋁-銦-氧薄膜研究」,台灣科技大學,碩士論文(2009)
    S. Maikap, S. Z. Rahaman, and T. C. Tien,“Nanoscale (EOT=5.6nm) nonvolatile memory characteristics using n-Si/SiO2/HfAlO nanocrystal/Al2O3/Pt capacitors”, Nanotechnology 19, 435202(2008)
    Y. S. Jang, J. H. Yoon, and Robert G. Elliman,“Formation of nickel-based nanocrystal monolayers for nonvolatile memory applications”, Appl. Phys. Lett. 92, 253108(2008)
    C. W. Hu, T. C. Chang, P. T. Liu, C. H. Tu, S. K. Lee, S. M. Sze, C. Y. Chang, B. S. Chiou, and T. Y. Tseng,“Formation of cobalt-silicide nanocrystals in Ge-doped dielectric layer to the application on nonvolatile memory”, Appl. Phys. Lett. 92, 152115(2008)
    Xiying Ma,“Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition”, Nanotechnology 19, 275706(2008)
    Y. C. Yeo, T. J. King, and Chenming Hu,“Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology”, Journal of Appl. Phys. Vol. 92 (2002)
    J. C. Wang, C. S. Lai, Y. K. Chen, C. T. Lin, C. P. Liu, Michael R. S. Huang, and Y. C. Fang,“Characteristics of Gadolinium Oxide Nanocrystal Memory with Optimized Rapid Thermal Annealing”, Electrochemical and Solid-State Lett. 12 (6) H202-H204(2009)
    P. Dufresne, E. Payen, J. Grlmblot, and J. P. Bonnelle,“Study of Ni-Mo-γ-Al2O3 Catalysts by X-ray Photoelectron and Raman Spectroscopy. Comparison with Co-Mo-γ-Al2O3 Catalysts”, J. Phys. Chem. 85, 2344(1981)
    Wayne E. Morgan, and John R. Van Wazer,“Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds”, J. Phys. Chem. Vol. 77, No. 7(1973)
    Wayne E. Morgan, Wojciech J. Stec, and John R. Van Wazer,“Inner-Orbital Binding-Energy Shifts of Antimony and Bismuth Compounds”, J. Phys. Chem. Vol. 77, 964(1973)
    Wang Wei, Ma Dong-Ge,“Nonvolatile Memory Effect in Organic Thin-Film Transistor Based on Aluminum Nanoparticle Floating Gate”, Chin. Phys. Lett. Vol. 27, No. 1(2010)018503
    V. Mikhelashvili, B. Meyler, S. Yofis, J. Salzman, M. Garbrecht, T. Cohen-Hyams, W. D. Kaplan, and G. Eisenstein,“A Nonvolatile Memory Capacitor Based on a Double Gold Nanocrystal Storing Layer and High-κDielectric Tunneling and Control Layers”, Journal of The Electrochemical Society, 157 (4) H463-H469(2010)
    C. W. Hu, T. C. Chang, C. H. Tu, Y. D. Chen, C. C. Lin, M. C. Chen, J. Y. Lin, Simon M. Sze, and T. Y. Tseng,“Nitric Acid Oxidation of Si for the Tunneling Oxide Application on CoSi2 Nanocrystals Nonvolatile Memory”, Journal of The Electrochemical Society, 157 (3) H332-H336(2010)
    Seon Pil Kim, Tae Hee Lee, Dong Uk Lee, Eun Kyu Kim, Hyun-Mo Koo, Won Ju Cho, and Young-Ho Kim,“Charging effect of In2O3 nano-particles embedded in polyimide layer for application as non-volatile nano-floating gate memory”, Current Appl. Phys. 9(2009)S43-S46
    Bei Li, Jingjian Ren, and Jianlin Liu,“Synthesis of high-density PtSi nanocrystals for memory application”, Appl. Phys. Lett. 96, 172104(2010)
    Shiqian Yang, Qin Wang, Manhong Zhang, Shibing Long, Jing Liu, and Ming Liu,“Titanium-tungsten nanocrystals embedded in a SiO2/Al2O3 gate dielectric stack for low-voltage operation in non-volatile memory”, Nanotechnology 21, 245201(2010)

    QR CODE