簡易檢索 / 詳目顯示

研究生: 黃筠傑
Yun-Jie Huang
論文名稱: 利用嵌入式類比快閃記憶體技術設計之暫態增強自適功率調變緩衝放大器積體電路設計
The Integrated Circuit Design of A Transient-Enhanced Power Adaptive Buffer Amplifier Using Embedded Analog Flash Memory Technologies
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳怡然
Yi-Jan Chen
劉宗德
Tsung-Te Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 109
中文關鍵詞: 緩衝放大器電容電路低功耗電路設計懸浮閘電晶體AB類放大器
外文關鍵詞: buffer amplifier, capacitive circuit, low-power circuit, floating gate transistor, class AB buffer amplifier
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract in Chinese. . .iii Abstract in English. . .iv Acknowledgments. . .vi Contents. . .vi List of Figures. . .x List of Tables. . .xcii 1 Introduction. . .1 1.1 Motivation. . .1 1.2 Floating-Gate Transistor. . .3 1.2.1 Fowler-Nordheim Tunneling. . .4 1.2.2 Hot-Carrier Injection. . .5 1.3 Thesis Organization. . .7 2 A Transient-Enhanced Power Adaptive Buffer Amplifier. . .8 2.1 Motivation. . .8 2.2 Literature Review. . .11 2.2.1 Amplifier with Adaptive Supply Current. . .11 2.2.2 Amplifier Architecture. . .12 2.2.3 Capacitive Circuits. . .14 2.3 Review of Prior Power Adaptive Buffer Amplifier. . .16 2.3.1 Capacitor Array of Adjustable Gain Amplifier. . .16 2.3.2 Circuit Structure. . .18 2.3.3 The Slew Rate Degradation in Rising Edge Step Response. . .20 2.4 Proposed Transient-Enhanced Power Adaptive Buffer Amplifier. . .22 2.4.1 Design Concept of Transient-Enhanced Circuit. . .22 2.4.2 Implementation and Operation of Transient-Enhanced Circuit. . .24 2.5 Analysis. . .26 2.5.1 Closed-Loop Analysis. . .26 2.5.2 Stability Analysis. . .28 2.5.3 Slew Rate Analysis. . .29 2.6 Measurement. . .30 2.6.1 Bandwidth and Gain Programmability. . .31 2.6.2 Slew Rate. . .33 2.6.3 Linearity. . .35 2.6.4 Figures of Merit and Comparison. . .36 3 elopment of Embedded Analog Flash Memory Devices and Its Program ming System In Single-Polysilicon Process. . .39 3.1 Motivation. . .39 3.2 Literature Review. . .40 3.3 Analog Memory Unit Cell and Programming Circuit Design. . .42 3.3.1 Analog Memory Unit Cell Design. . .43 3.3.2 Two Dimensional Analog Memory Array. . .44 3.3.3 Charge Pump. . .46 3.3.4 High Voltage Select Circuit. . .47 3.3.5 Charge Pump With High Voltage Select Circuit for Fowler-Nordheim Tunneling. . .49 3.3.6 Regulated Negative Charge Pump. . .51 3.3.7 Negative Voltage Select Circuit. . .54 3.3.8 Logarithmic Amplifier. . .56 3.4 Programming Method Implement and System Design. . .58 3.4.1 Programming Method Implement. . .58 3.4.2 Programming System Design. . .62 3.4.3 Programming Flow Chart. . .63 3.4.4 Programming Time Diagram. . .65 3.5 Measurement Result. . .67 3.5.1 Logarithmic Amplifier. . .68 3.5.2 Regulated Negative Charge Pump. . .69 3.5.3 Charge Storage Reliability. . .76 3.5.4 Charge Programmability. . .77 3.5.5 Characterization. . .78 3.5.6 programming precision. . .81 3.5.7 Comparison Table. . .82 4 Conclusion and Contribution. . .83 4.1 Contribution. . .83 4.2 Conclusion. . .84 References. . .86

    [1] 黃惠群, ” 適用於生醫應用之低功耗可編程四通道類比感測前端電路與使用線 性提升技術之轉導電容濾波器”. 國立臺灣科技大學碩士論文, 2019.
    [2] 蕭宗益, ” 類比記憶體編成之積體電路設計與系統整合”. 國立臺灣科技大學 碩士論文, 2015.
    [3] D. Du and K. M. Odame, “A bandwidth-adaptive preamplifier,” IEEE Journal of Solid–State Circuits, vol. 48, no. 9, pp. 2142–2153, 2013.
    [4] Z. J. Lo, Y. C. Wang, Y. J. Huang, and S. Y. Peng, “A reconfigurable differential-to single-ended autonomous current adaptation buffer amplifier suitable for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1405–1418, 2021.
    [5] S. Kim, J. Hasler, and S. George, “Integrated floating-gate programming environ ment for system-level ics,” IEEE Transactions on Very Large Scale Integration Sys tems, vol. 24, no. 6, pp. 2244–2252, 2016.
    [6] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, “A fully reconfigurable low noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Trans actions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [7] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “Power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors,” IEEE Transac tions on Circuits and Systems II: Express Briefs, vol. 62, no. 2, pp. 199 – 203, 2015.
    [8] S.-Y. Peng, L.-H. Liu, P.-K. Chang, T.-Y. Wang, and H.-Y. Li, “A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental The ory and Applications, vol. 64, no. 6, pp. 1318 – 1327, 2017.
    [9] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-H. Liu, “A power-efficient reconfigurable OTA-C filter for low-frequency biomedical applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, no. 2, pp. 543 – 555, 2018.
    [10] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE Journal of Solid–State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
    [11] Z. J. Lo, B. Nath, Y. C. Wang, and S. Y. Peng, “A floating-gate-based four-channel reconfigurable analog front-end integrated circuit,” IEEE Proceedings of the Inter national Symposium on Circuits and Systems, pp. 1–4, 2021.
    [12] K.-J. de Langen and J. H. Huijsing, “Compact low-voltage power-efficient oper ational amplifier cells for VLSI,” IEEE Journal of Solid–State Circuits, vol. 33, no. 10, pp. 1482–1496, 1998.
    [13] J.Ramirez-Angulo, R.G.Carvajal, J. A. Galan, and A. Lopez-Martin, “A free but efficient low-voltage class-AB two-stage operational amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 53, no. 7, pp. 568–571, 2006.
    [14] P. R. Surkanti and P. M. Furth, “Converting a three-stage pseudoclass-AB amplifier to a true-class-AB amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 59, no. 4, pp. 229–233, 2012.
    [15] C. G.-Alberdi, J. A.-Ruiz, A. J. L.-Martin, and J. R.-Angulo, “Micropower class AB VGA with gain-independent bandwidth,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 60, no. 7, pp. 397–401, 2013.
    [16] F. E.-Alfaro, S. Pennisi, G. Palumbo, and A. J. L.-Martin, “Low-power class-AB CMOS voltage feedback current operational amplifier with tunable gain and band width,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 61, no. 8, pp. 574–578, 2014.
    [17] E. C.-Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carvajal, “0.7-V three stage class-AB CMOS operational transconductance amplifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 11, pp. 1807–1815, 2016.
    [18] A. L.-Martin, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. R.- Angulo, “Enhanced single-stage folded cascode OTA suitable for large capacitive loads,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 65, no. 4, pp. 441–445, 2018.
    [19] M. Garde, A. Lopez-Martin, R.G.Carvajal, and J.Ramirez-Angulo, “Super class AB recycling folded cascode OTA,” IEEE Journal of Solid–State Circuits, vol. 53, no. 22, pp. 2614–2623, 2018.
    [20] A. Paul, J. R.-Angulo, A. D. Sanchez, A. J. L.-Martin, R. G. Carvajal, and F. X. Li, “Super-gain-boosted AB-AB fully differential miller Op-Amp with 156dB open loop gain and 174MV/V MHz pF/µW figure of merit in 130nm CMOS technology,” IEEE Access, vol. 9, pp. 57603–57617, 2021.
    [21] J. B.-Legarra, C. A. C.-Blas, A. J. L.-Martin, and J. R.-Angulo, “Gain-boosted super class AB OTA based on nested local feedback,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 68, no. 9, pp. 3562–3573, 2021.
    [22] D. Kahng and S. Sze, “A floating-gate and its application to memory devices,” Bell System Technical Journal, vol. 46, no. 4, pp. 1288–1295, 1967.
    [23] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, C.-H. W. A. Pesavento, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pfet eeprom with 70-å tunnel oxide manu factured in generic logic cmos processes,” IEEE Transactions on Device and Mate rials Reliability, vol. 4, no. 3, pp. 353–358, 2004.
    [24] S. Kinoshita, T. Morie, M. Nagata, and A. Iwata, “A pwm analog memory pro gramming circuit for floating-gate mosfets with 75- us programming time and 11 bit updating resolution,” IEEE Journal of Solid–State Circuits, vol. 36, no. 8, pp. 1286– 1290, 2001.
    [25] Y. Wong, M. Cohen, and P. Abshire, “A floating-gate comparator with automatic offset adaptation for 10-bit data conversion,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 52, no. 7, pp. 1316–1326, 2005.
    [26] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-electron injection programming of floating-gate voltage bias generators at 13-bit resolution,” IEEE Journal of Solid–State Circuits, vol. 46, no. 11, pp. 2685–2692, 2011.
    [27] P. D. Smith, M. Kucic, and P. Hasler, “Accurate programming of analog floating-gate arrays,” IEEE Proceedings of the International Symposium on Circuits and Systems, 2002.
    [28] G. Serrano, “Automatic rapid programming of large arrays of floating-gate ele ments,” IEEE Proceedings of the International Symposium on Circuits and Systems, 2002.
    [29] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Adaptive algorithm using hot electron injection for programming analog computational memory elements within 0.2Circuits, vol. 41, no. 9, pp. 2107–2114, 2006.
    [30] A. Basu and P. E. Hasler, “A fully integrated architecture for fast and accurate pro gramming of floating gates over six decades of current,” IEEE Transactions on Very Large Scale Integration Systems, vol. 19, no. 6, pp. 953–962, 2011.
    [31] J. F. Dickson, “On-chip high-voltage generation in mnos integrated circuits using an improved voltage multiplier technique,” IEEE Journal of Solid–State Circuits, vol. 11, no. 3, pp. 374–378, 1976.
    [32] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-electron injection programming of floating-gate voltage bias generators at 13-bit resolution,” IEEE Journal of Solid–State Circuits, vol. 46, no. 11, pp. 2685–2692, 2011.
    [33] J. Lu and J. Holleman, “A floating-gate analog memory with bidirectional sigmoid updates in a standard digital process,” IEEE Proceedings of the International Sym posium on Circuits and Systems, pp. 1600–1603, 2013.

    無法下載圖示 全文公開日期 2028/07/20 (校內網路)
    全文公開日期 2028/07/20 (校外網路)
    全文公開日期 2028/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE