簡易檢索 / 詳目顯示

研究生: 賴敏瑞
Min-rui Lai
論文名稱: 應用於生醫領域之高功率效能可重組化類比前端感測電路
Power-Efficient Reconfigurable Analog Sensing Front-End Circuits for Biomedical Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 劉深淵
Shen-Iuan Liu
林宗賢
Tsung-Hsien Lin
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 123
中文關鍵詞: 懸浮閘電晶體低功耗低雜訊放大器設計低功耗高線性度轉導放大器粒子群最佳化演算法PSO低功耗高線性度可編程重組之類比濾波器設計
外文關鍵詞: Floating-Gate technology, Low-power Low-noise amplifier(LNA), Low-power highly linear OTA, Low-power reconfigurable highly linear OTA-C fil, particle swarm optimization (PSO)
相關次數: 點閱:400下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穿戴式生理監控系統解決了傳統監控系統上的許多限制,而類比前端電路是穿戴式生理監控系統中重要的區塊。本篇論文提出了類比前端感測電路中的低功耗低雜訊生理訊號放大器及小面積高功耗效率的高線性度轉導電容濾波器,並且使用懸浮閘電晶體編程技術調整此兩種電路的所有參數。

    此篇論文提出了全差動電路及電流重複使用的低雜訊放大器,其雜訊效率因素的理論極限值等同於一顆電晶體,並用懸浮閘電晶體編程技術調整放大器的增益、高通截止頻率及低通截止頻率。量測到的雜訊效率因素範圍在不同的頻寬下為$1.96$到$2.25$。本論文用此低雜訊放大器量測了肌電圖、心電圖、眼動圖以及腦波。

    本研究亦提出了一可重組化高功耗效率以及高面積效率的轉導電容二階濾波器,並使用懸浮閘電晶體編程技術調整所有二階濾波器的參數,如增益、頻寬以及品質因素。本論文提出一個由六組擴散器跟四組差動對組成之高線性度差動對去解決轉導電容二階濾波器操作在次臨界區時線性範圍極小的問題,此差動對亦展現了最佳的線性效率因素,又用互補的高線性度差動對以及懸浮閘電晶體提出一高功耗效率高線性度轉導放大器,而所提出的二階濾波器即是由四個高功耗效率的高線性度轉導放大器所組成。為了考慮製程變異的影響,本論文量測了許多不同晶片中的二階濾波器,量測結果顯示我們提出的架構有$62.3\dB$的動態範圍,與先前的論文做比較,本論文提出之轉導電容二階濾波器有最佳的功率效能、面積效能及最大的頻寬調整,最低及最高的可調整頻寬比例為$10000$倍。

    又為了優化線性效率,本論文實現了一以全面學習粒子群演算法為基礎之最佳化演算法,並用此演算法對八組擴散器跟四組差動對進行優化,進而提出一線性度最佳化之差動對。本論文使用此差動對結合懸浮閘電晶體組成一高功耗效率線性度最佳化之轉導放大器,所提出的轉導放大器線性範圍比基本的次臨界區轉導放大器寬$8.25$倍,功耗效率提升$6.2$倍。又使用此轉導放大器提出一個高功耗效率線性度最佳化轉導電容濾波器,所有二階濾波器的參數:增益、頻寬以及品質因素,亦皆可以調整。量測到的動態範圍提升到$66\dB$。最後本論文串接了六個二階濾波器,提出了一可重組化高階高功耗效率以及線性度最佳化的轉導電容濾波器,並在本篇論文中展示了由六個二階濾波器合成出的十二階之巴特沃斯濾波器以及六階之柴比雪夫濾波器。


    In a wearable health monitoring system, the analog front-end (AFE) circuit is the key element. This thesis presents two main components of AFE circuit for biomedical sensing applications, a low-power low-noise biopotential sensing amplifier (LNA) and a compact power-efficient linearized operational-transconductance-amplifier-capacitor (OTA-C) filter, with the feature of full reconfigurability. In these works, the floating-gate (FG) transistors are employed for reconfigurable design.

    To detect weak biopotential signals, the input referred noise of an LNA must be as low as possible. By using complementary differential pairs along with the current reuse technique, the theoretical limit for the noise efficiency factor (NEF) of the proposed amplifier is approaching to that of a single transistor. In this proposed LNA, the gain, high frequency corner, and low frequency corner are programmable by tuning the charges stored in FG transistors. The measured NEF values in different bandwidth settings, are $1.96$ to $2.25$. The proposed amplifier is also demonstrated by recording electromyography (EMG), electrocardiography (ECG), electrooculography (EOG), and electroencephalography (EEG) signals from human bodies.

    A FG-based reconfigurable OTA-C biquadratric filter with excellent power and area efficiencies is presented. According to FG techniques, all filter parameters, including the gains, the natural frequency, and the quality factor, in a biquadratic section are programmable. To widen the linear range of a subthreshold differential pair, we presented a linearized differential pair, hextuple-diffusor-quadruple-differential-pairs (HDQDP) a the excellent linearity efficiency factor (LEF). We also proposed an OTA composed of complementary HDQDPs and a FG common-mode feedback scheme. The reconfigurable biquadratic section is composed of four proposed power-efficient linearized OTAs. In consideration of process variation, multi-chip biquadratic sections are measured. The proposed topology exhibits the dynamic of $62.3\dB$. Compared with the prior works, the proposed power-efficient linearized reconfigurable OTA-C biquadratric section possesses the best power and area efficiencies with the natural frequency tuning range more than four decades.

    To optimize linearity efficiency, an optimization algorithm based on the comprehensive learning particle swarm optimizer (CLPSO) is implemented to obtain dimensions of a linearity-optimized differential pair, octuple-diffusor-quadruple-differential-pairs (ODQDP). Based on the ODQDPs and FG transistors, a linearity-optimized OTA is designed to comprise a power-efficient biquadratic section. As measurement result showing, the proposed OTA can be improved to exhibit $8.25$ times wider input linear range and $6.2$ times improvement in power efficiency when compared with a basic subthreshold OTA. All filter parameters, including the gain, the natural frequency, and the quality factor, in this biquadratic section are programmable. The measured dynamic is improved to $66\dB$. A FG-based power-efficient OTA-C filter consisting of a cascade of multiple power-efficient linearity-optimized biquadratic sections are used to implemented a $12^{th}-$order Butterworth lowpass response and a $6^{th}-$order Chebyshev bandpass response.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Biomedical Sensing Front-End Circuit . . . . . . . . . . . . . . . . . . . 1 1.3 Floating-Gate Transistor and Reliability . . . . . . . . . . . . . . . . . . 3 2 A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier with 1.96 Noise Efficiency Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Biopotential Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Reconfigurable Low-Noise Amplifier Design . . . . . . . . . . . . . . . 12 2.3.1 Floating-Gate Operational Transconductance Amplifier . . . . . . 13 2.3.2 Reconfigurable Feedback Pseudo-Resistor . . . . . . . . . . . . . 17 2.3.3 Input and Output Voltage Swing Analysis . . . . . . . . . . . . . 17 2.3.4 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.5 Design Tradeoff and Comparison . . . . . . . . . . . . . . . . . 21 2.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Test Bench Results . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Biological Measurement Results . . . . . . . . . . . . . . . . . . 29 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 A Compact Power-Efficient Reconfigurable OTA-C Filter Achieving 62dB Dynamic Range in Subthreshold Operation with A Tuning Range More Than Four Decades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Differential Pairs, Linearization, and Linearity Efficiency Factor . . . . . 37 3.2.1 Basic Differential Pair . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Commonly-Used Linearization Techniques . . . . . . . . . . . . 38 3.2.3 Nonlinearity Cancellation . . . . . . . . . . . . . . . . . . . . . 40 3.2.4 The Linearity Efficiency Factor . . . . . . . . . . . . . . . . . . 41 3.3 Design of A Low-Power Highly-Linear OTA . . . . . . . . . . . . . . . 42 3.3.1 Hextuple-Diffusor-Quadruple-Differential-Pair (HDQDP) . . . . 42 3.3.2 Power Efficient Linearized OTA . . . . . . . . . . . . . . . . . . 46 3.3.3 OTA Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Reconfigurable OTA-C Biquadratic Filter Architecture . . . . . . . . . . 49 3.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 Power Efficient Linearized OTA . . . . . . . . . . . . . . . . . . 50 3.5.2 Reconfigurable Biquadratic filter . . . . . . . . . . . . . . . . . 54 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 An Optimization Algorithm for the Linearity-Optimized OTA-C Filter in Subthreshold Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Review on Differential Pair Linearization . . . . . . . . . . . . . . . . . 66 4.2.1 Common Linearization Techniques . . . . . . . . . . . . . . . . 66 4.2.2 Linearity Efficiency Factor . . . . . . . . . . . . . . . . . . . . . 67 4.2.3 Multiple-Diffusor-Multiple-Differential-Pair(MDMDP) . . . . . 69 4.3 The Design of A Power-Efficient Linearity-Optimized OTA in Subthreshold Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Transistor and Differential Pair Modelling . . . . . . . . . . . . . 72 4.3.2 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . 74 4.3.3 The Complete Design of Current-reuse OTA . . . . . . . . . . . 77 4.4 Reconfigurable OTA-C Filter . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5.1 Power Efficient Linearity-Optimized OTA . . . . . . . . . . . . . 83 4.5.2 Reconfigurable Biquadratic Section . . . . . . . . . . . . . . . . 86 4.5.3 Programmable High-Order Filter . . . . . . . . . . . . . . . . . . 89 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    [1] K. Eshraghian, ``SoC emerging technologies,'' Proceedings of the IEEE, vol. 94,
    no. 6, pp. 1197--1213, 2006.
    [2] X. Zou, X. Xu, L. Yao, and Y. Lian, ``A 1-V 450-nW fully integrated programmable
    biomedical sensor interface chip,'' Solid-State Circuits, IEEE Journal of, vol. 44,
    no. 4, pp. 1067--1077, 2009.
    [3] F. Zhang, J. Holleman, and B. P. Otis, ``Design of ultra-low power biopotential
    amplifiers for biosignal acquisition applications,'' Biomedical Circuits and Systems,
    IEEE Transactions on, vol. 6, no. 4, pp. 344--355, 2012.
    [4] S.-Y. Peng, G. Gurun, C. M. Twigg, M. S. Qureshi, A. Basu, S. Brink, P. E. Hasler,
    and F. Degertekin, ``A large-scale reconfigurable smart sensory chip,'' in Circuits
    and Systems(ISCAS), IEEE International Symposium on, pp. 2145--2148, 2009.
    [5] K. Odame and B. Minch, ``Implementing the lorenz oscillator with translinear elements,''
    Analog Integrated Circuits and Signal Processing, vol. 59, no. 1, pp. 31--41,
    2009.
    [6] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F. Baskaya,
    C. M. Twigg, and P. Hasler, ``A floating-gate-based field-programmable analog array,''
    Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1781--1794, 2010.
    [7] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, ``An analog programmable multidimensional
    radial basis function based classifier,'' Circuits and Systems I: Regular
    Papers, IEEE Transactions on, vol. 54, no. 10, pp. 2148--2158, 2007.
    [8] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and
    Compact Modeling. Springer, 2004.
    [9] Y. Leblebici and S.-M. Kang, ``Modeling and simulation of hot-carrier-induced device
    degradation in MOS circuits,'' Solid-State Circuits, IEEE Journal of, vol. 28,
    no. 5, pp. 585--595, 1993.
    [10] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, ``A new technique for hot
    carrier reliability evaluations of flash memory cell after long-term program/erase
    cycles,'' Electron Devices, IEEE Transactions on, vol. 46, no. 9, pp. 1883--1889,
    1999.
    [11] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen,
    T. Humes, and C. Diorio, ``Reliability of pFET EEPROM with 70-atunnel oxide
    manufactured in generic logic CMOS processes,'' Device and Materials Reliability,
    IEEE Transactions on, vol. 4, no. 3, pp. 353--358, 2004.
    [12] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, ``A precision CMOS amplifier
    using floating-gate transistors for offset cancellation,'' Solid-State Circuits, IEEE
    Journal of, vol. 42, no. 2, pp. 280--291, 2007.
    [13] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, ``A floating-gate-based programmable
    CMOS reference,'' Solid-State Circuits, IEEE Journal of, vol. 55, no. 11,
    pp. 3448--3456, 2008.
    [14] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, ``Indirect programming
    of floating-gate transistors,'' Circuits and Systems I: Regular Papers,
    IEEE Transactions on, vol. 54, no. 5, pp. 951--963, 2007.
    [15] R. Yazicioglu, S. Kim, T. Torfs, H. Kim, and C. Van Hoof, ``A 30 uW analog signal
    processor ASIC for portable biopotential signal monitoring,'' Solid-State Circuits,
    IEEE Journal of, vol. 46, no. 1, pp. 209--223, 2011.
    [16] C. Qian, J. Parramon, and E. Sanchez-Sinencio, ``A micropower low-noise neural
    recording front-end circuit for epileptic seizure detection,'' Solid-State Circuits, IEEE
    Journal of, vol. 46, no. 6, pp. 1392--1405, 2011.
    [17] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and
    F. Solzbacher, ``A low-power integrated circuit for a wireless 100-electrode neural
    recording system,'' Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 123--
    133, 2007.
    [18] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic,
    R. Puers, and G. Gielen, ``A multichannel integrated circuit for electrical recording
    of neural activity, with independent channel programmability,'' Biomedical Circuits
    and Systems, IEEE Transactions on, vol. 6, no. 2, pp. 101--110, 2012.
    [19] J. Lee, H.-G. Rhew, D. R. Kipke, and M. P. Flynn, ``A 64 channel programmable
    closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC,''
    Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1935--1945, 2010.
    [20] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, ``A batterypowered
    activity-dependent intracortical microstimulation IC for brain-machinebrain
    interface,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 4, pp. 731--745,
    2011.
    [21] R. R. Harrison and C. Charles, ``A low-power low-noise CMOS amplifier for neural
    recording applications,'' Solid-State Circuits, IEEE Journal of, vol. 38, no. 6, pp. 958-
    -965, 2003.
    [22] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, ``An energy-efficient micropower
    neural recording amplifier,'' Biomedical Circuits and Systems, IEEE Transactions
    on, vol. 1, no. 2, pp. 136--147, 2007.
    [23] M. Chae, J. Kim, and W. Liu, ``Fully-differential self-biased bio-potential amplifier,''
    Electronics letters, vol. 44, no. 24, pp. 1390--1391, 2008.
    [24] V. Majidzadeh, A. Schmid, and Y. Leblebici, ``Energy efficient low-noise neural
    recording amplifier with enhanced noise efficiency factor,'' Biomedical Circuits and
    Systems, IEEE Transactions on, vol. 5, no. 3, pp. 262--271, 2011.
    [25] L. Liu, X. Zou, W. Goh, R. Ramamoorthy, G. Dawe, and M. Je, ``800 nW 43 nV/
    p
    Hz neural recording amplifier with enhanced noise efficiency factor,'' Electronics
    letters, vol. 48, no. 9, pp. 479--480, 2012.
    [26] J. Guo, J. Yuan, J. Huang, J.-Y. Law, C.-K. Yeung, and M. Chan, ``32.9 nv/
    p
    Hz
    60.6 dB THD dual-band micro-electrode array signal acquisition IC,'' Solid-State
    Circuits, IEEE Journal of, vol. 47, no. 5, pp. 1209--1220, 2012.
    [27] Y. Tseng, Y. Ho, S. Kao, and C. Su, ``A 0.09 W low power front-end biopotential
    amplifier for biosignal recording,'' Biomedical Circuits and Systems, IEEE Transactions
    on, vol. 6, no. 5, pp. 508--516, 2012.
    [28] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, S.-T. Chang, M.-D. Ker, C.-
    Y. Lin, Y.-C. Huang, C.-W. Chou, et al., ``A fully integrated 8-channel closed-loop
    neural-prosthetic SoC for real-time epileptic seizure control,'' in Solid-State Circuits
    Conference Digest of Technical Papers(ISSCC), IEEE International, pp. 286--287,
    2013.
    [29] R. R. Harrison, ``The design of integrated circuits to observe brain activity,'' Proceedings
    of the IEEE, vol. 96, no. 7, pp. 1203--1216, 2008.
    [30] M. Steyaert and W. Sansen, ``A micropower low-noise monolithic instrumentation
    amplifier for medical purposes,'' Solid-State Circuits, IEEE Journal of, vol. 22, no. 6,
    pp. 1163--1168, 1987.
    [31] A. M. Sodagar, G. E. Perlin, Y. Yao, K. Najafi, and K. D. Wise, ``An implantable 64-
    channel wireless microsystem for single-unit neural recording,'' Solid-State Circuits,
    IEEE Journal of, vol. 44, no. 9, pp. 2591--2604, 2009.
    [32] A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, and A. Rodriguez-
    Vazquez, ``A low-power programmable neural spike detection channel with embedded
    calibration and data compression,'' Biomedical Circuits and Systems, IEEE
    Transactions on, vol. 6, no. 2, pp. 87--100, 2012.
    [33] A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, and P. E. Hasler, ``Neural
    dynamics in reconfigurable silicon,'' Biomedical Circuits and Systems, IEEE Transactions
    on, vol. 4, no. 5, pp. 311--319, 2010.
    [34] S. Nease, S. George, P. Hasler, S. Koziol, and S. Brink, ``Modeling and implementation
    of voltage-mode CMOS dendrites on a reconfigurable analog platform,''
    Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 1, pp. 76--84,
    2012.
    [35] C. Huang, P. Sarkar, and S. Chakrabartty, ``Rail-to-rail, linear hot-electron injection
    programming of floating-gate voltage bias generators at 13-bit resolution,'' Solid-
    State Circuits, IEEE Journal of, vol. 46, no. 11, pp. 2685--2692, 2011.
    [36] S.-Y. Peng, M. S. Qureshi, P. E. Hasler, A. Basu, and F. L. Degertekin, ``A chargebased
    low-power high-SNR capacitive sensing interface circuit,'' Circuits and Systems
    I: Regular Papers, IEEE Transactions on, vol. 55, no. 7, pp. 1863--1872, 2008.
    [37] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, ``A 60-dB
    dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,''
    Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
    on, vol. 47, no. 12, pp. 1391--1398, 2000.
    [38] X. Qian, Y. P. Xu, and X. Li, ``A CMOS continuous-time low-pass notch filter for
    EEG systems,'' Analog Integrated Circuits and Signal Processing, vol. 44, no. 3,
    pp. 231--238, 2005.
    [39] P. Corbishley and E. Rodriguez-Villegas, ``A nanopower bandpass filter for detection
    of an acoustic signal in a wearable breathing detector,'' Biomedical Circuits and
    Systems, IEEE Transactions on, vol. 1, no. 3, pp. 163--171, 2007.
    [40] S.-Y. Lee and C.-J. Cheng, ``Systematic design and modeling of a OTA-C filter for
    portable ECG detection,'' Biomedical Circuits and Systems, IEEE Transactions on,
    vol. 3, no. 1, pp. 53--64, 2009.
    [41] M. Yang, J. Liu, Y. Xiao, and H. Liao, ``14.4 nW fourth-order bandpass filter for
    biomedical applications,'' Electronics letters, vol. 46, no. 14, pp. 973--974, 2010.
    [42] E. Rodriguez-Villegas, A. J. Casson, and P. Corbishley, ``A subhertz nanopower lowpass
    filter,'' Circuits and Systems II: Analog and Digital Signal Processing, IEEE
    Transactions on, vol. 58, no. 6, pp. 351--355, 2011.
    [43] J. L. Bohorquez, M. Yip, A. P. Chandrakasan, and J. L. Dawson, ``A biomedical
    sensor interface with a sinc filter and interference cancellation,'' Solid-State Circuits,
    IEEE Journal of, vol. 46, no. 4, pp. 746--756, 2011.
    [44] R. Sarpeshkar, R. F. Lyon, and C. Mead, ``A low-power wide-dynamic-range analog
    VLSI cochlea,'' in Neuromorphic systems engineering, pp. 49--103, Springer, 1998.
    [45] C. D. Salthouse and R. Sarpeshkar, ``A practical micropower programmable bandpass
    filter for use in bionic ears,'' Solid-State Circuits, IEEE Journal of, vol. 38, no. 1,
    pp. 63--70, 2003.
    [46] A. G. Katsiamis, E. Drakakis, and R. F. Lyon, ``A biomimetic, 4.5W, 120 dB, logdomain
    cochlea channel with AGC,'' Solid-State Circuits, IEEE Journal of, vol. 44,
    no. 3, pp. 1006--1022, 2009.
    [47] M. Tuckwell and C. Papavassiliou, ``An analog gabor transform using sub-threshold
    180-nm CMOS devices,'' Circuits and Systems I: Regular Papers, IEEE Transactions
    on, vol. 56, no. 12, pp. 2597--2608, 2009.
    [48] A. Casson and E. Rodriguez-Villegas, ``A 60 pW Gm-C continuous wavelet transform
    circuit for portable EEG systems,'' Solid-State Circuits, IEEE Journal of,
    vol. 46, no. 6, pp. 1406--1415, 2011.
    [49] L. Acosta, M. Jimenez, R. G. Carvajal, A. J. Lopez-Martin, and J. Ramirez-Angulo,
    ``Highly linear tunable CMOS low-pass filter,'' Circuits and Systems I: Regular Papers,
    IEEE Transactions on, vol. 56, no. 10, pp. 2145--2158, 2009.
    [50] S. Koziel and S. Szczepanski, ``Design of highly linear tunable CMOS OTA for
    continuous-time filters,'' TCASII, vol. 49, no. 2, pp. 110--122, 2002.
    [51] E. Rodriguez-Villegas, A. Yufera, and A. Rueda, ``A 1.25-V micropower Gm-C filter
    based on FGMOS transistors operating in weak inversion,'' Solid-State Circuits,
    IEEE Journal of, vol. 39, no. 1, pp. 100--111, 2004.
    [52] X. Zhang and E. El-Masry, ``A novel CMOS OTA based on body-driven MOSFETs
    and its applications in OTA-C filters,'' Circuits and Systems I: Regular Papers, IEEE
    Transactions on, vol. 54, no. 6, pp. 1204--1212, 2007.
    [53] P. M. Furth and H. A. Ommani, ``Low-voltage highly-linear transconductor design
    in subthreshold CMOS,'' in IEE Proceedings-Circuits, Devices and Systems, vol. 1,
    pp. 156--159, 1997.
    [54] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, ``Transconductance amplifier
    structures with very small transconductances: a comparative design approach,''
    Solid-State Circuits, IEEE Journal of, vol. 37, no. 6, pp. 770--775, 2002.
    [55] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, ``A fully reconfigurable lownoise
    biopotential sensing amplifier with 1.96 noise efficiency factor,'' Biomedical
    Circuits and Systems, IEEE Transactions on, vol. 8, no. 3, pp. 411--422, 2014.
    [56] C. Mead and M. Ismail, Analog VLSI implementation of neural systems. Springer,
    1989.
    [57] F. Krummenacher and N. Joehl, ``A 4-MHz CMOS continuous-time filter with onchip
    automatic tuning,'' Solid-State Circuits, IEEE Journal of, vol. 23, no. 3, pp. 750-
    -758, 1988.
    [58] T. Delbruck, ``Bump'circuits for computing similarity and dissimilarity of analog
    voltages,'' in Neural Networks(IJCNN), International Joint Conference on, vol. 1,
    pp. 475--479, 1991.
    [59] H. Tanimoto, M. Koyama, and Y. Yoshida, ``Realization of a 1-V active filter using
    a linearization technique employing plurality of emitter-coupled pairs,'' Solid-State
    Circuits, IEEE Journal of, vol. 26, no. 7, pp. 937--945, 1991.
    [60] S. Rai, J. Holleman, J. N. Pandey, F. Zhang, and B. Otis, ``A 500 W neural tag with
    2 V rms AFE and frequency-multiplying MICS/ISM FSK transmitter,'' in Solid-
    State Circuits Conference Digest of Technical Papers(ISSCC), IEEE International,
    pp. 212--213, 2009.
    [61] P. M. Furth, ``A continuous-time bandpass filter implemented in subthreshold CMOS
    with large-signal stability,'' in Midwest Symposium on Circuits and Systems, vol. 40,
    pp. 264--267, 1997.
    [62] A. Tajalli and Y. Leblebici, ``A widely-tunable and ultra-low-power MOSFET-C
    filter operating in subthreshold,'' in Custom Integrated Circuits Conference(CICC),
    IEEE, pp. 593--596, 2009.
    [63] H. Le-Thai, H.-H. Nguyen, H.-N. Nguyen, H.-S. Cho, J.-S. Lee, and S.-G. Lee, ``An
    IF bandpass filter based on a low distortion transconductor,'' Solid-State Circuits,
    IEEE Journal of, vol. 45, no. 11, pp. 2250--2261, 2010.
    [64] C. Garcia-Alberdi, A. Lopez-Martin, L. Acosta, R. G. Carvajal, and J. Ramirez-
    Angulo, ``Tunable class AB CMOS Gm-C filter based on quasi-floating gate techniques,''
    Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60,
    no. 5, pp. 1300--1309, 2013.
    [65] R. C. Eberhart and J. Kennedy, ``A new optimizer using particle swarm theory,''
    in Proceedings of the sixth international symposium on micro machine and human
    science, vol. 1, pp. 39--43, 1995.
    [66] J. Kennedy and R. C. Eberhart, ``Particle swarm optimization,'' in Neural Networks.
    Proceedings., IEEE International Conference on, vol. 4, pp. 1942--1948, 1995.
    [67] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, ``Comprehensive learning
    particle swarm optimizer for global optimization of multimodal functions,'' Evolutionary
    Computation, IEEE Transactions on, vol. 10, no. 3, pp. 281--295, 2006.

    QR CODE