簡易檢索 / 詳目顯示

研究生: 李鏘璽
Chiang-hsi Lee
論文名稱: 低功耗高動態範圍可編程重組之高階濾波器晶片設計
Integrated Circuit Design of A High Order Low Power Large Dynamic Range Reconfigurable Analog Filter
指導教授: 彭盛裕
Sheng-yu Peng
口試委員: 林啟萬
Chii-wann Lin
郭重顯
Chung-hsien Kuo
姚嘉瑜
Chia-yu Yao
林淵翔
Yuan-hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 低功耗可編程可重組高階類比濾波器轉導放大器雙二階濾波器懸浮閘編程技術
外文關鍵詞: Low-power, reconfigurable, programmable, high-order analog filter, operational transconductance amplifier, biquad filter, floating gate
相關次數: 點閱:208下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代生醫感測積體電路設計著重於低功耗,本研究也致力於此目的發展低功耗之應用感測電路。此電路不需要大能量供應,所以可延長感測時間,並可應用在可攜式裝置中。但積體電路設計往往依不同需求而客製化生產,在設計和製程會花費許多金錢和時間上的成本,所以本研究將可調整之設計觀念加入,產品可依照需求做調整,方可節省設計上的時間成本。
    本論文提出一低功耗、可編程、可重組之高階類比濾波器。本研究利用台積電 0.35μm製程設計雙二階(biquad)濾波器串接為十二階類比濾波器,雙二階濾波器擁有帶通濾波和低通濾波兩種功能,可應用於不同感測需求,其中此濾波器可以自由選取雙二階濾波器串接階數,因此此濾波器可重組為不同階數的濾波器,最多可串接為十二階類比濾波器,其目的為增加濾波器之衰減程度,使濾波效果更為準確。
    此雙二階濾波器最大特點為可編程之轉導放大器組合之轉導電容濾波器,在轉導放大器電路中,利用懸浮閘編程技術,控制電晶體閘級電壓,達到可編程轉導放大器之電流,藉此調整轉導放大器的轉導值,選擇轉導值可以改變雙二階濾波器之轉移函數,此編程行為決定其濾波器之截止頻率、品質因數、直流增益。除此之外懸浮閘編程技術在本研究也運用在共模回授電路、非揮發性記憶體;懸浮閘編程技術是本研究的核心技術。
    本篇論文總共分為六章,其中第一章為導論。在第二章中,將會介紹濾波器和懸浮閘電晶體的基本理論。而第三章中,介紹轉導電容濾波器低功耗設計的實現方法和其優缺點分析及改善。於第四章中,說明電路架構和佈局。在第五章為量測結果與討論。最後第六章為結論。


    Recently more and more biomedical sensing systems are required to be integrated into a small volume achieving a small form factor to facilitate non-obstructive health monitoring and diagnoses. In these systems, power consumption is a critical design factor because of the limited power resources for long-term monitoring and because of the stringent criterions for power dissipation. Therefore, how to design low-power or power-efficient sensing front-end integrated circuits has drawn more and more attention in both academia and industrials.
    This research focuses on the development of an integrated power-efficient reconfigurable filter circuit that can be adopted in biomedical sensing front-ends. Analog integrated circuit is usually customized for some specific application and usually costs money and time in design, fabrication, and testing. However, in this research, we proposed a reconfigurable system so that the circuit can be programmed differently according to the demands of the applications. It can be more economic both in finance and in time.
    In this thesis, a low-power reconfigurable high-order analog filter chip with a large dynamic range is designed and tested. The chip is composed of 6 identical reconfigurable biquad circuits of which gain, quality factor, and nature frequency all can be programmed using floating gate technologies. This biquad provides both lowpass and bandpass responses. It can be configured to make up any 12-order all-pole filters, such as Butterworth, Chebyshev, or Bessel filers. The chip was fabricated in TSMC 0.35μm 2P4M standard CMOS process. The measured dynamic range of a single biquad proposed in this research can be 55dB with corner frequency set at 1KHz while consuming 80nW.

    目錄 摘要i Abstractiii 目錄v 圖目錄viii 表目錄xii 第一章 簡介1 1.1 前言 1 1.2 研究動機2 1.3 論文大綱3 第二章 濾波器設計與懸浮閘電晶體之基本理論5 2.1 類比濾波器設計6 2.1.1 濾波器動作與規格6 2.1.2 濾波器轉移函數與頻率響應10 2.1.3 設計參數Q和ω012 2.2 類比濾波器實現15 2.2.1 雙二階濾波器 16 2.2.1.1 雙二階響應16 2.2.1.2 通用阻抗轉換器18 2.2.2 Butterworth濾波器19 2.2.3 Chebyshev濾波器22 2.3 懸浮閘電晶體23 第三章 轉導放大器與轉導電容放大器之電路設計27 3.1 轉導放大器27 3.1.1 轉導放大器基本特性28 3.1.2 轉導放大器應用電路29 3.1.3 OpAmp-RC濾波器和OTA-C濾波器31 3.2 低功耗轉導放大器設計32 3.2.1 弱反轉層32 3.2.2 懸浮閘電晶體應用於全差動疊接轉導放大器35 3.2.2.1全差動疊接轉導放大器35 3.2.2.2懸浮閘電晶體偏壓與共模回授電路37 3.3動態範圍40 3.3.1 轉導放大器線性範圍41 3.3.2 轉導放大器增加線性範圍技術43 3.4 雙二階轉導電容濾波器49 3.4.1 雙二階轉導電容帶通濾波器49 3.4.2 雙二階轉導電容低通濾波器51 第四章 可編程重組濾波器設計53 4.1 研究背景與原理53 4.2 系統架構與電路介紹53 4.2.1 非揮發性記憶體串並列介面電路54 4.2.2 可編程重組高階低功耗類比濾波器57 4.2.2.1 懸浮閘電晶體編程電路58 4.2.2.2 可編程轉導放大器驗證電路65 4.2.2.3 可重組高階類比濾波器工作電路68 4.2.2.4 選擇訊號配置70 4.3 積體電路佈局74 第五章 量測與討論78 5.1 懸浮閘電晶體之編程量測79 5.2 轉導放大器線性範圍量測81 5.3 雙二階濾波器頻率響應量測85 5.4 高階濾波器頻率響應量測89 5.5 動態範圍量測92 5.6 量測總結94 第六章 結論與未來展望97 6.1 論文結論97 6.2 未來展望98 參考文獻100

    [1] R. R. Harrison, and C. Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE Journal of Solid-State Circuit, Vol. 38, pp.958-965, June 2003.
    [2] J. G. Webster, “Medical Instrumentation Application and Design,” chapter 1, John Wiley & Sons, 2009.
    [3] M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network with 10240 floating gate synapses,” Proceedings of the International Joint Conference on Neural Networks, Washington, D.C., vol.II, pp.191-196,1989.
    [4] R. Schaumann, H.-Q. Xiao, M.E.V. Valkenburg, “Analog Filter Design,” chapter 1-18,New York. Oxford, 2011.
    [5] L.R. Carley, “Trimming analog circuits using floating-gate analog MOS memory,” IEEE Journal of Solid-State Circuits, vol. 24, no. 6, pp1569-1575, Dec. 1989.
    [6] A. Thomsen and M.A. Brooke, “A floating gate MOSFET with tunneling injector fabricated using a standard double-poly silicon CMOS process,” IEEE Electron Device Letters, vol. 12, pp.111-113, 1991.
    [7] P. E. Hasler, “Foundations of Learning in Analog VLSI,” Ph.D. Thesis, California Institute of Technology, February 1997.
    [8] S.-Y. Peng, P.E. Hasler, and D.V. Anderson, “An Analog Programmable Multidimensional Radial Basis Function Based Classifier,” IEEE Transactions on Circuits and Systems I, vol.54, no.10, pp.2148-2158, Oct. 2007.
    [9] P. E. Allen, “CMOS Analog Circuit Design,” chapter 6, New York. Oxford, 2002.
    [10] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbru ̈ck, R. Douglas, “Analog VLSI: Circuit and Principles,” chapter 2-8, The MIT Press, 2002.
    [11] B. A. Minch, “A low-voltage MOS cascode bias circuit for all current levels,” IEEE Symposium on Circuits and Systems, Vol. 3, pp. 619-622, May 2002.
    [12] R. Chawla, F. Adil, G. Serrano, P. E. Hasler, “Programmable Gm– C Filters Using Floating-Gate Operational Transconductance Amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 54, pp. 481-491, March 2007.
    [13] B. Razavi, “Design of Analog CMOS Integrated Circuit,” Chapter 9, McGraw-Hill, 2001.
    [14] W. M. C. Sansen, “Analog Design Essentials,” Chapter 13, Springer, 2006.
    [15] P. M. Furth, H. A. Ommani, “Low-Voltage Highly-Linear Transconductor Design in Subthreshold CMOS” Proceedings of the 40th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 156-159, Aug 1997.
    [16] C. Sawigun, W. A.Serdijn, “A 2.6nW, 0.5V, 52dB-DR, 4th-order Gm-C BPF: Moving closer to the FoM's fundamental limit,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 656-659, May 2012.
    [17] C. Salthouse, R. Sarpeshkar, “A practical micropower programmable bandpass filter for use in bionic ears,” IEEE J. Solid-State Circuits, vol. 38, pp. 63-70, Jan 2003.
    [18] P. Corbishley, E. Rodriguez-Villegas, “A nanopower bandpass filterfor detection of an acoustic signal in a wearable breathing detector,” IEEE Trans. BioCAS, vol. 1, pp. 163-171, Sept 2007.
    [19] M. Tuckwell, C. Papavassiliou, “An analog gabor transform using sub-threshold 180-nm CMOS devices,” IEEE Trans. Circuits Syst. I, vol. 56, pp. 2597-2608, Dec 2009.
    [20] M. Yang, J. Liu, Y. Xiao, H. Liao, “14.4 nW fourth-order bandpass filter for
    biomedical applications,” IET Electronics Letters, vol. 46, pp. 973-974, 2010.
    [21] A. J. Casson and E. Rodiguez-Villegas, “A 60pW gm-C continuous wavelet transform circuit for portable EEG systems,” IEEE J. Solid- State Circuits, Vol. 46, pp. 1406-1415, March 2011.
    [22] S.-Y. Lee, C.-J. Cheng, “Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection,” IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, pp. 53-64, Feb. 2009.
    [23] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, “A 60 db dynamic-range CMOS sixth-order 2.4 Hz lowpass filter for medical applications,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. Conf., vol. 47, pp. 1391–1398, Dec. 2000.
    [24] A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez,“Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, pp. 770–775, Jun. 2002.
    [25] E. Rodriguez-Villegas, A. Yufera, A. Rueda,“A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion,” IEEE J. Solid-State Circuits, vol. 39, pp. 100–111, Jan. 2004
    [26] X. Qian, Y. P. Xu, X. Li, “ACMOScontinuous-time lowpass notch filter for EEG systems,” Analog Integr. Circuits Signal Process., vol. 44, pp. 231–238, Jul. 2005.

    無法下載圖示 全文公開日期 2018/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE