簡易檢索 / 詳目顯示

研究生: 蔡黎煜
Li-Yu Cai
論文名稱: 採用不同填料之植生滯留槽對污染削減能力之評估
A Study on Pollutant Removal Efficiency of Bioretention Cells Using Difference Backfill Material
指導教授: 何嘉浚
Chia-Chun Ho
口試委員: 康世芳
Shyh-Fang Kang
陳起鳳
Chi-Feng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 植生滯留槽水力停留時間沸石水質淨化
外文關鍵詞: LID, low-impact development, hydraulic retention time, zeolite
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口不斷的增長,人類的工業活動和農業活動的不停擴張,水質污染問題已經成為了世界性的主要問題。低影響開發(Low-impact development,LID,也稱低衝擊開發)這一項技術就此誕生。其中,植生滯留槽屬於分散型LID/BMPs處理設施,不僅可以收集地表徑流水、降低降雨尖峰流量,內部的材料結構也有淨化水質的作用。
    本研究針對傳統型植生滯留槽(traditional bioretention cell, TBC)的污染削減能力的同時,參考呈層複合土壤淨化系統(Multi-Soil-Layering System, MSL)對其內部填料進行更換組建成加強去磷型植生滯留槽(enhanced dephosphorization bioretention cell, EBC)。以污水廠初沉池出流水作為入流,進行水質監測實驗,評估內部填料為碎石的EBC.G,TBC.G和以沸石為填料的TBC.Z,EBC.Z的污染削減能力。
    TBC.G的氨氮削減成效在60%左右,且隨著水力停留時間的增加而逐漸降低至45% ,TBC.Z,EBC.G,EBC.Z的氨氮削減成效在99%左右。TBC.Z的總磷和正磷酸鹽削減成效在85%左右,高於TBC.G的45%~55%,低於EBC.G,EBC.Z的96%。TBC.G,TBC.Z化學需氧量的削減成效在80%以上,且隨著水力停留時間的增加而增加至95%以上,EBC.G,EBC.Z的化學需氧量的削減成效一直維持在93%以上。
    更換SMB填料能大幅提高化學需氧量、氨氮、總磷、正磷酸鹽的削減成效。更換沸石填料能大幅提高氨氮削減成效,對化學需氧量無效,對總磷、正磷酸鹽的效果低於SMB填料。同時更換兩種填料可維持最佳削減成效。但無論如何更換填料,對硝酸鹽氮的削減成效都不盡如人意。


    With the growth of the population, human industrial and agricultural activities expanding, water pollution has become a major problem in the world. The technology of Low-impact development was born. Bioretention is decentralized LID/BMPs treatment system. It not only collect surface runoff and reduce the peak flow, but also the backfill material can purify water.
    This research study aimed at the pollutant removal efficiency of a traditional bioretention cell (TBC). At the same time, the research refers to the Multi-Soil-Layering System (MSL) using difference backfill material to form an enhanced dephosphorization bioretention cell (EBC). With the effluent water from the primary sedimentation tank of the sewage treatment plant as the inflow to take water quality analysis experiment. Evaluate the pollutant removal efficiency of EBC.G and TBC.G whose backfill material is gravel, TBC.Z and EBC.Z whose backfill material is zeolite.
    The NH3-N removal efficiency of TBC.G is about 60%, gradually decreasing to 45% with the increase of hydraulic retention time. The NH3-N removal efficiency of TBC.Z, EBC.G and EBC.Z is around 99%. TBC.Z’s TP and PO43+ removal efficiency is about 85%, which is higher than 45%~55% of TBC.G and lower than 96% of EBC.G and EBC.Z. The COD removal efficiency of TBC.G and TBC.Z is more than 80%, increasing to 95% with the increase of hydraulic retention time. The COD removal efficiency of EBC.G and EBC.Z is more than 80%.
    Replacing SMB can greatly improve the pollutant removal efficiency of NH3-N, TP, PO43+ and COD. Replacing zeolite can greatly improve the pollutant removal efficiency of NH3-N, but not influencing in COD. The effect on TP and PO43+ is lower than which replace SMB. Replacing both backfill material, SMB and zeolite, would maintains optimum the pollutant removal efficiency. However, no matter how the backfill material was replaced, the pollutant removal efficiency of NO3+-N was not satisfactory.

    摘 要 i ABSTRACT iii 誌 謝 v 目 錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究內容 3 1.4 研究流程 4 第二章 文獻回顧 5 2.1 植生滯留槽 5 2.1.1 水文狀況 6 2.1.2 除氮除磷 7 2.1.3 去除重金屬 9 2.1.4 案例介紹 10 2.2 呈層複合土壤淨化系統 13 2.2.1 有機物: 14 2.2.2 總磷: 15 2.2.3 氨氮: 15 2.2.4 案例介紹 16 第三章 實驗設備與研究方法 19 3.1 植生滯留槽槽體 19 3.2 污水來源及給水設備 20 3.3 內部材料說明 22 3.4 水質檢驗項目 28 3.5 設施安裝 29 3.6 實驗過程 32 第四章 實驗結果與分析 33 4.1 以碎石為槽體填料 33 4.1.1 氨氮 33 4.1.2 總磷 35 4.1.3 正磷酸鹽 37 4.1.4 化學需氧量 38 4.1.5 硝酸鹽氮 40 4.1.6 懸浮顆粒物 41 4.2 以沸石為槽體材料 42 4.2.1 氨氮 42 4.2.2 總磷 44 4.2.3 正磷酸鹽 45 4.2.4 化學需氧量 47 4.2.5 懸浮顆粒物 48 4.3 結果對比 49 4.4 長時間水力停留實驗 52 第五章 結論與建議 55 5.1 結論 55 5.2 建議 57 參考文獻 58

    1. Bratieres, K., Fletcher, T. D., Deletic, A., & Zinger, Y. (2008). Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Research, 42(14), 3930-3940. doi:https://doi.org/10.1016/j.watres.2008.06.009

    2. Cyrus, J. S., & Reddy, G. B. (2011). Sorption and desorption of ammonium by zeolite: Batch and column studies. Journal of Environmental Science and Health, Part A, 46(4), 408-414. doi:10.1080/02773813.2010.542398

    3. Davis Allen, P. (2008). Field Performance of Bioretention: Hydrology Impacts. Journal of Hydrologic Engineering, 13(2), 90-95. doi:10.1061/(ASCE)1084-0699(2008)13:2(90)

    4. Davis, A. P. (2007). Field Performance of Bioretention: Water Quality. Environmental Engineering Science, 24(8), 1048-1064. doi:10.1089/ees.2006.0190

    5. Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2001). Laboratory study of biological retention for urban stormwater management. Water Environment Research, 73(1), 5-14. doi:10.2175/106143001x138624

    6. Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environ Res, 78(3), 284-293. doi:10.2175/106143005x94376

    7. Glass, C., & Bissouma, S. (2005). Evaluation of a parking lot bioretention cell for removal of stormwater pollutants. Ecosystems and Sustainable Development v, 81, 699-708.

    8. Hong, Y., Huang, G., An, C., Song, P., Xin, X., Chen, X., . . . Zheng, R. (2019). Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. Journal of Environmental Management, 240, 273-284. doi:10.1016/j.jenvman.2019.03.097

    9. Hsieh, C. H., Davis, A. P., & Needelman, B. A. (2007). Bioretention column studies of phosphorus removal from urban stormwater runoff. Water Environment Research, 79(2), 177-184. doi:10.2175/106143006X111745

    10. Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., & Eubanks, P. (2008). Pollutant Removal and Peak Flow Mitigation by a Bioretention Cell in Urban Charlotte, N.C. Journal of Environmental Engineering-asce - J ENVIRON ENG-ASCE, 134. doi:10.1061/(ASCE)0733-9372(2008)134:5(403)

    11. Hunt, W. F., Jarrett, A. R., Smith, J. T., & Sharkey, L. J. (2006). Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. Journal of Irrigation and Drainage Engineering, 132(6), 600-608. doi:10.1061/(ASCE)0733-9437(2006)132:6(600)

    12. Jones, C., & Jacobsen, J. (2005a). Nitrogen cycling, testing and fertilizer recommendations. Nutrient management module, 3(4449.3).

    13. Jones, C., & Jacobsen, J. (2005b). Phosphorus cycling, testing and fertilizer recommendations. Nutrient management module, 4, 4449-4454.

    14. Kim, H., Seagren, E. A., & Davis, A. P. (2003). Engineered bioretention for removal of nitrate from stormwater runoff. Water Environment Research, 75(4), 355-367.

    15. Li, G., Xiong, J., Zhu, J., Liu, Y., & Dzakpasu, M. (2021). Design influence and evaluation model of bioretention in rainwater treatment: A review. Science of The Total Environment, 787, 147592. doi:https://doi.org/10.1016/j.scitotenv.2021.147592

    16. Lin, Y.-J., Chen, H.-F., Iizuka, Y., & Fang, J.-N. (2019). 沸石除銨機制之探討.

    17. Mai, Y., & Huang, G. (2021). Hydrology and rainfall runoff pollutant removal performance of biochar-amended bioretention facilities based on field-scale experiments in lateritic red soil regions. Science of The Total Environment, 761, 143252. doi:10.1016/j.scitotenv.2020.143252

    18. Roy-Poirier, A., Champagne, P., & Filion, Y. (2010). Review of Bioretention System Research and Design: Past, Present, and Future. Journal of Environmental Engineering, 136(9), 878-889. doi:10.1061/(asce)ee.1943-7870.0000227

    19. Zuo, X., Zhang, H., & Yu, J. (2020). Microbial diversity for the improvement of nitrogen removal in stormwater bioretention cells with three aquatic plants. Chemosphere, 244, 125626. doi:10.1016/j.chemosphere.2019.125626

    20. 張峰毓,植生滯留槽應用於茶園非點源污染削減之研究,碩士論文,國立台北科技大學,台北,2015。

    21. 何嘉浚,「呈層複合土壤 (Multi-soil Layering )水質 淨化系統應用於河川或水庫集水區模場選址及基 本資料調查先期規劃計畫」,行政院環境保護署成 果報告,2012。

    22. 張鈞偉,地工合成材料應用於呈層複合土壤水質淨化系統之研究,碩士論文,國立台北科技大學,台北,2014。

    23. 林孟儒,地工不織布應用於呈層複合土壤水質淨化系統最適性之研究,碩士論文,國立台北科技大學,台北,2014。

    24. 陳思宇,提升植生滯留槽對於營養鹽去除成效之研究,碩士論文,國立台北科技大學,台北,2018。

    25. 李翰林,多層複合濾料水質淨化系統施工規範研擬之研究,碩士論文,國立台灣科技大學,台北,2021。

    QR CODE