簡易檢索 / 詳目顯示

研究生: 熊子賢
Hsiung-Tzu Hsien
論文名稱: 以矽合金/碳靶之共濺鍍製備碳化矽暨碳化矽磊晶高速化對策模擬之研究
Preparation of the silicon carbide films by silicide/carbon co-sputtering and the strategy analysis of high rate silicon carbide epitaxy
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 周賢鎧
Shyan-Kay Jou
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 碳化矽共濺鍍氣相沉積法熱壁式化學氣相沉積法旋轉式氣體蓮蓬頭
外文關鍵詞: silicon carbide, co-sputtering, hot wall CVD, rotating shower head
相關次數: 點閱:437下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個部分,第一部分目的在探討使用共濺鍍氣相沉積法製備碳化矽薄膜。不同於高溫(1600℃)化學氣相沉積法製備碳化矽薄膜,本研究之重點在於利用矽合金靶材和碳靶在相對低溫的下以不同射頻電漿製程參數嘗試製備出碳化矽薄膜。輔以光學儀器測量,驗證成長出的薄膜中是否含有碳化矽鍵結、以及薄膜晶體結構和薄膜元素分析。
    第二部分針對熱壁式化學氣相沉積法磊晶碳化矽機台磊晶速率過低的問題做一新的改善提案,設計一可迴旋之氣體蓮蓬頭於磊晶載盤上,藉由提高與載盤之間相對的反應氣流流速,用以降低熱傳邊界層之厚度並使矽甲烷在熱傳邊界層滯留時間縮短,以達到提升碳化矽磊晶成長速率之目的。模擬計算結果顯示在一般碳化矽磊晶機台的操作條件下,當迴旋式氣體蓮蓬頭轉速達500 rpm時,能讓碳化矽磊晶成長速率由16 um/hr有效提升到150 um/hr。


    This paper is divided into two parts. The first part is to prepare silicon carbide films by using silicide/carbon co-sputtering; the second part is to explore the strategy for high rate silicon carbide epitaxy through introducing a rotating shower head.
    First of all, silicon carbide films were prepared by co-sputtering silicide alloy and carbon targets at temperatures lower than 380 ℃. FT-IR measurements indicated that the obtained films content with the characteristic Si-C bonding at 800 cm-1.
    In the second part, a new concept to introduce rotating shower head in a conventional hot-wall epitaxial SiC chemical vapor deposition equipment was proposed to increase the thermal boundary layer thickness so as to enhance the growth rate of SiC epitaxy. One dimensional simulation was made to calculate the variation of thermal boundary layer thickness with respect to the rotational speed of the shower head. The results showed that with increasing the rotating speed of shower head from 0 to 500 rpm, the growth rate of silicon carbide can effectively be raised from 16 um/hr to 150 um/hr under a typical deposition condition.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 碳化矽(Silicon Carbide, SiC) 3 1.2.1碳化矽結構 3 1.2.2 寬能隙與高崩潰電場 7 1.2.3 熱傳導率 12 1.2.4 在高電場下的高電子速度 14 1.3 碳化矽晶圓的製備 16 1.3.1高溫昇華法(Sublimation Method) 16 1.3.2 化學氣相沉積法(Chemical Vapor Deposition) 20 1.4 碳化矽的應用 27 1.5 研究目的與方向 28 第二章 實驗相關部分 30 2.1 實驗藥品和氣體 30 2.2 實驗裝置和步驟 31 2.3 實驗程序 33 2.3.1 矽晶基材之清洗 33 2.3.2 玻璃基材的清洗 35 2.3.3 沉積碳化矽膜實驗及量測 36 2.4 分析儀器 37 2.4.1 多角度全光譜橢圓偏振技術(Variable Angle Spectroscopic Ellipsometry, VASE) 37 2.4.2 X光繞射儀(D2 PHASER X-ray Diffractometer ) 43 2.4.3 傅立葉紅外線光譜儀(FTIR) 45 2.4.4 X射線光電子能譜化學分析儀(X-ray photoelectron spectroscopy, XPS) 48 第三章 結果與討論 49 3.1 共濺鍍物理氣相沉積法製備碳化矽薄膜 49 3.2 化學氣相沉積碳化矽薄膜-高長膜速率化之策略模擬分析 63 3.2.1 數據分析 65 第四章 結論 78 參考文獻 79

    [1] Bardeen, J., & Brattain, W. H. (1948). The transistor, a semi-conductor triode. Physical Review, 74(2), 230.

    [2] Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.

    [3] Dreike, P. L., Fleetwood, D. M., King, D. B., Sprauer, D. C., & Zipperian, T. E. (1994). An overview of high-temperature electronic device technologies and potential applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 594-609.

    [4] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [5] William F.. Smith, & Hashemi, J. (2011). Foundations of materials science and engineering. McGraw-Hill.

    [6] http://www.junmintech.com/jishuzhongxin/2016/0804/260.html

    [7] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [8] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [9] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [10] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [11] 施敏, and 伍國.半導體元件物理與製作技術. 2013.

    [12] Dreike, P. L., Fleetwood, D. M., King, D. B., Sprauer, D. C., & Zipperian, T. E. (1994). An overview of high-temperature electronic device technologies and potential applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 594-609.

    [13] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [14] Hudgins, J. L., Simin, G. S., Santi, E., & Khan, M. A. (2003). An assessment of wide bandgap semiconductors for power devices. IEEE Transactions on Power Electronics, 18(3), 907-914.

    [15] Chow, T. P., & Tyagi, R. (1994). Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Transactions on Electron Devices, 41(8), 1481-1483.

    [16] Hudgins, J. L., Simin, G. S., Santi, E., & Khan, M. A. (2003). An assessment of wide bandgap semiconductors for power devices. IEEE Transactions on Power Electronics, 18(3), 907-914.

    [17] Chelnokov, V. E., & Syrkin, A. L. (1997). High temperature electronics using SiC: actual situation and unsolved problems. Materials Science and Engineering: B, 46(1-3), 248-253.

    [18] Richter, A., Höteis, M., Benick, J., Henneck, S., Hermle, M., & Glunz, S. W. (2010, June). Towards industrially feasible high-efficiency n-type Si solar cells with boron-diffused front side emitter-combining firing stable Al 2 O 3 passivation and fine-line printing. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (pp. 003587-003592). IEEE.
    [19] Slack, G. A. (1964). Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 35(12), 3460-3466.

    [20] Johnson, E. (1966, March). Physical limitations on frequency and power parameters of transistors. In 1958 IRE International Convention Record (Vol. 13, pp. 27-34). IEEE.

    [21] https://www.ctimes.com.tw/DispCols/tw/SiC/電晶體

    [22] Lely, J.A. (1955) Darstellung von einkristallen von siliziumcarbid und beherrschung von art und menge der eingebauten verunreinigungen. Ber. Dtsch. Keram. Ges., 32, 229.

    [23] Tairov, Y. M., & Tsvetkov, V. F. (1978). Investigation of growth processes of ingots of silicon carbide single crystals. Journal of crystal growth, 43(2), 209-212.

    [24] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [25] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [26] Lely, J.A. (1955) Darstellung von einkristallen von siliziumcarbid und beherrschung von art und menge der eingebauten verunreinigungen. Ber. Dtsch. Keram. Ges., 32, 229.

    [27] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [28] Matsunami, H., Nishino, S., & Ono, H. (1981). IVA-8 heteroepitaxial growth of cubic silicon carbide on foreign substrates. IEEE Transactions on Electron Devices, 28(10), 1235-1236.

    [29] Nishizawa, S. I., & Pons, M. (2006). Growth and Doping Modeling of SiC‐CVD in a Horizontal Hot‐Wall Reactor. Chemical vapor deposition, 12(8‐9), 516-522.
    [30] Ayers, J. E., Kujofsa, T., Rago, P., & Raphael, J. (2016). Heteroepitaxy of semiconductors: theory, growth, and characterization. CRC press.

    [31] Ayers, J. E., Kujofsa, T., Rago, P., & Raphael, J. (2016). Heteroepitaxy of semiconductors: theory, growth, and characterization. CRC press.
    [32] Ueda, T., Nishino, H., & Matsunami, H. (1990). Crystal growth of SiC by step-controlled epitaxy. Journal of crystal growth, 104(3), 695-700.

    [33] Ueda, T., Nishino, H., & Matsunami, H. (1990). Crystal growth of SiC by step-controlled epitaxy. Journal of crystal growth, 104(3), 695-700.

    [34] Ueda, T., Nishino, H., & Matsunami, H. (1990). Crystal growth of SiC by step-controlled epitaxy. Journal of crystal growth, 104(3), 695-700.

    [35] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [36] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons.

    [37] Danno, K., Hashimoto, K., Saitoh, H., Kimoto, T., & Matsunami, H. (2004). Low-concentration deep traps in 4H-SiC grown with high growth rate by chemical vapor deposition. Japanese journal of applied physics, 43(7B), L969.

    [39] 阿部華. (2008). Au-Si 共晶合金の構造と化学結合性に関する研究. 大学院研究年報 理工学研究科篇, (38).

    [40] Lin, Y. C., Baum, M., Haubold, M., Fromel, J., Wiemer, M., Gessner, T., & Esashi, M. (2009, June). Development and evaluation of AuSi eutectic wafer bonding. In Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International (pp. 244-247). IEEE.

    [41] Koga, K., Matsuoka, Y., Tanaka, K., Shiratani, M., & Watanabe, Y. (2000). In situ observation of nucleation and subsequent growth of clusters in silane radio frequency discharges. Applied Physics Letters, 77(2), 196-198.

    [42] http://homepages.spa.umn.edu/~sourabh/elips.pdf

    [43] http://highscope.ch.ntu.edu.tw/wordpress/?p=41141

    [44] El Khalfi, A. I., Ech-chamikh, E. M., Ijdiyaou, Y., Azizan, M., Essafti, A., Nkhaili, L., & Outzourhit, A. (2014). Infrared and Raman Study of Amorphous Silicon Carbide Thin Films Deposited by Radiofrequency Cosputtering. Spectroscopy Letters, 47(5), 392-396.

    [45] Porter, D. A., Easterling, K. E., & Sherif, M. (2009). Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press.

    [46] El Khalfi, A. I., Ech-chamikh, E. M., Ijdiyaou, Y., Azizan, M., Essafti, A., Nkhaili, L., & Outzourhit, A. (2014). Infrared and Raman Study of Amorphous Silicon Carbide Thin Films Deposited by Radiofrequency Cosputtering. Spectroscopy Letters, 47(5), 392-396.

    [47] Sun, Y., Miyasato, T., & Wigmore, J. K. (1999). Characterization of excess carbon in cubic SiC films by infrared absorption. Journal of Applied Physics, 85(6), 3377-3379.

    [48] Meziere, J., Ucar, M., Blanquet, E., Pons, M., Ferret, P., & Di Cioccio, L. (2004). Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept. Journal of crystal growth, 267(3), 436-451.

    [49] Silva, J. A., Quoizola, S., Hernandez, E., Thomas, L., & Massines, F. (2014). Silicon carbon nitride films as passivation and antireflective coatings for silicon solar cells. Surface and Coatings Technology, 242, 157-163.

    QR CODE