簡易檢索 / 詳目顯示

研究生: 謝曉麟
Hsiao-ling Hsieh
論文名稱: 風機併網發電對配電系統運轉特性之影響研究
Effects of Wind Power Interconnection on the Operation Characteristics of Distribution Systems
指導教授: 陳在相
Tsai-Hsiang Chen
口試委員: 吳瑞南
Ruay-Nan Wu
蕭瑛東
Ying-Tung Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 風力發電配電系統運轉特性配電系統運轉特性風機併網
外文關鍵詞: voltage change
相關次數: 點閱:192下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的主要目的在探討風機併網發電對配電系統運轉特性之影響。從功率方程式的觀念出發,首先推導出風機併聯饋線穩態電壓,電流和功率損失變化率的評估方程式,其次藉著改變方程式中的各項元件參數值,有系統地探討在不同的風機併網條件下,各影響因子對併聯系統穩態運轉特性的影響程度及其範圍。評估方程式的建立可作為日後相關研究工作之分析工具,研究的結果均以最簡明的圖表呈現,有助於配電工程人員及風機業者在規劃風機併網系統時之參考。
    此外並依據電學基本理論推導出風機輸出功率與壓升效應之數學表示式,進而應用併聯饋線母線匯流排電壓變動率限制規定,分析中壓配電饋線最大可行之併網風機容量。分析的結果可供配電系統相關人員在規劃風機併網發電時之參考。


    The major purpose of this thesis is to investigate the effects of wind power interconnection on the operation characteristics of distribution systems. First of all, a set of formulas to evaluate the steady-state voltage variation, feeders current change and feeder power losses while wind generators interconnected to a distribution network were proposed on the basis of power flow equation. Second, the impacts of wind generator on the utility distribution feeders are systematically investigated in detail by changing the system parameters in the formula. Besides, in this paper, the requirement of steady-state voltage variation at the PCC is also presented and applied to evaluate the maximum allowable installed capacity of wind generator on the distribution network. For convenience, the results have been concisely presented in the forms of charts and tables in this thesis. They are of value to the distribution engineers and wind power suppliers while planning a new wind power project to an existing distribution network.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 3 1.3 研究貢獻 4 1.4 論文架構 5 第二章 風力發電系統 6 2.1 前言 6 2.2 風力發電機 6 2.2.1 風力發電機的轉換功率 7 2.2.2 風力發電機的型式 10 2.3 風力發電機應用現況 11 2.3.1 國外風力發電機發展現況 11 2.3.2 國內風力發電機應用現況 13 2.4 風力發電併聯至配電系統之影響 14 第三章 風機併網對配電系統運轉電壓之影響分析與探討 17 3.1 前言 17 3.2 範例系統設計及模擬參數設定 18 3.2.1 負載及風力機模型 20 3.3 影響併聯饋線電壓變動率之因素探討 21 3.4 模擬結果與分析 24 3.4.1 電力潮流分析結果 24 3.5 系統短路容量對風機併網系統電壓變動率之影響分析 26 3.6 主變壓器阻抗對風機併網系統電壓變動率之影響分析 29 3.7 風機併網位置對配電系統電壓變動率之影響分析 31 3.8 饋線長度對風機併網系統電壓變動率之影響分析 35 3.9 風機輸出功率對風機併網系統電壓變動率之影響分析 40 3.10饋線負載量對風機併網系統電壓變動率之影響分析 43 3.11風機配置方式對風機併網系統電壓變動率之影響分析 46 第四章 風機併網對配電系統饋線電流之影響分析與探討 49 4.1 前言 49 4.2 影響饋線電流變化率之因素探討 49 4.3 風機輸出功率對風機併網饋線電流變動率之影響分析 53 4.4 風機併網位置對配電系統電流變動率之影響分析 57 4.5 饋線負載量對風機併網系統電流變化率之影響分析 59 第五章 風機併網對配電系統功率損失之影響分析與探討 62 5.1 前言 62 5.2 影響饋線功率損失變化率之因素探討 62 5.3 風機輸出功率對風機併網饋線功率損失變動率之影響分析 65 5.4 風機併網位置對配電系統功率損失變動率之影響分析 69 5.5 饋線負載量對風機併網系統功率損失變動率之影響分析 71 第六章 風力發電機最大可行併網容量分析與探討 74 6.1 前言 74 6.2 共同耦合點電壓上升百分率分析 74 6.3 最大可行併網風機容量探討 82 第七章 結論及未來研究方向 84 7.1 結論 84 7.2 未來研究方向 85 參考文獻 86 作者簡介 89

    [1]羅天賜,劉益華,「分散型發電技術介紹」,電機月刊,第十三卷第二期,第252-253頁,民國八十二年二月。
    [2]「台灣電力公司再生能源發電系統併聯技術要點」,台電公司,民國九十一年六月。
    [3]游振和,洪寶亮,蘇育辰,簡弘奇,「風力發電的種類及控制模式概述」,台電工程月刊,第705期,第31頁,民國九十六年五月。
    [4]GEWC全球風能委員會,「Global Wind Energy Markets Continue to Boom – 2006 another Record Year」,Press Release, 2007。
    [5]配電技術手冊(四),地下配電線路設計,台灣電力公司,民國八十五年八月。
    [6]T. Gonen, Electric Power Distribution System Engineering, New York: Mc Graw-Hill(1986)。
    [7]Erich Hau, Wind-turbines Fundamentals, Technologies, Application, Economics, Springer Verlag, New York, pp. 59-65, 434-439, 2000.

    [8]T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, John Wiley & Sons, Ltd., pp. 559-607 (2001).
    [9]Garden, P., “Experience of Wind Farm Electrical Issues in Europe and Further Afield” Proc. of the 18th British Wind Energy Association Conference, pp. 59-64 (1996)
    [10]Mukund R. Patel, Wind and Solar Power Systems, CRC Press LLC, pp. 35-39, 265-269 (1999).
    [11]Gary L. Johnson, Wind Energy Systems, Prentice-Hall, Inc., New Jersey, pp. 189-229 (1985).
    [12]Nigel C. Scott, David J. Atkinson, and James E. Morrell, “Use of Load Control to Regulate Voltage on Distribution Networks With Embedded Generation,” IEEE Transactions on Power Systems, Vol. 17, No. 2, pp. 510-515 (2002).
    [13]S. N. Liew and G. Strbac, “Maximising Penetration of Wind Generation in Existing Distribution Networks,” IEE Proc.-Gener. Transm. Distrib., Vol. 149, No. 3, pp. 256-262 (2002).
    [14]S. K. Salman, “The Impact of Embedded Generation on Voltage Regulation and Losses of Distribution Networks,” IEE Colloguium 15, (1996).
    [15]J. Mutale, G. Strbac, S. Curcic and N. Jenkins, “Allocation of Losses in Distribution Systems with Embedded Generation,” IEE Proc.-Gener. Transm. Distrib. Vol. 147, No.1, pp.7-14 (2000) .
    [16]C. L. Masters, J. Mutale, G. Strbac, S. Curcic and N. Jenkins, “Statistical Evaluation of Voltages in Distribution Systems with Embedded Wind Generation, “IEE Proc.-Gener. Transm. Distrib., Vol. 147, No.4, pp. 207-212 (2000).
    [17]T. Griffin, K. Tomsovic, D. Secrest and A. Law, “Placement of Dispered Generations Systems for Reduced Losses,” IEEE Proceeding of the 33rd Hawaii International Conference on System Sciences, (2000).
    [18]Joon-Ho Choi and Jae-Chul Kim, “Advanced Voltage Regulation Method at the Power Distribution Systems Interconnected with Dispersed Storage and Generation Systems,” IEEE Transactions on Power Delivery, Vol. 15, No. 2, pp. 691-696 (2000).
    [19]S. Skorgaard, J. Holm, J. Knudsen, K. K. Jensen and T. G. Nielsen, “Connection of Wind Turbines to Low and Medium Voltage Networks,” DEFU Committee Report III-E, 2. Edition (1998).
    [20]R. Caire, N. Retiere, S. Martino, C. Andrieu and N. Hadjsaid, “Impact Assessment of LV Distributed Generation on MV Distribution Network,” IEEE Power Engineering Society Summer Meeting, Vol. 3, pp. 1423-1428 (2002).
    [21]Stavros A. Papathanassiou, Nikos D. Hatziargyriou, “Technical Requirements for the Connection of Dispersed Generation to the Grid,” IEEE Power Engineering Society Summer Meeting, Vol. 2, pp. 749-754 (2001).
    [22]N. M. Ijumba, A.A. Jimoh and M. Nkabinde, “Influence of Distribution Generation on Distribution Network Performance, “IEEE AFICON, Vol.2, pp. 961-964 (1999).
    [23]Philip P. Barker and Robert W. De Mello, “Determining the Impact of Systems, “IEEE Power Engineering Society Summer Meeting, Vol. 3, pp. 1645-1656 (2000).
    [24]T.E. Kim and J.E. Kim, “A Method for Determining the Introduction Limit of Distributed Generation System in Distribution System,” IEEE (2001).
    [25]T. Ackermann and V. Knyazkin, “Interaction between Distributed Transmission and Distribution Conference and Exhibition 2002 : Asia Pacific, Vol. 2, pp. 1357-1362 (2002).
    [26]Joon-Ho Choi and Jae-Chul Kim, “Evaluation of Interconnection Capacity of Dispersed Storage and Generation Systems to the Power Distribution Systems from the Viewpoint of Voltage Regulation,” TENCON 99. Proceedings of the IEEE Region 10 Conference, Vol. 2, pp. 1438-1441 (1999).
    [27]Distribution Network of Embedded Generation,” IEE Colloquium, Economics of Embedded Generation (Ref. No. 1998/512), pp. 6/1-6/13 (1998).
    [28]G. Celli and F. Pilo, “Optimal Distributed Generation Allocation in MV Distribution Networks,” 22nd IEEE Power Engineering Society International Conference, pp. 81-86 (2001).
    [29]Ljubomir Kojovic, “Impact of PG on Voltage Regulation,” IEEE Power Engineering Society Summer Meeting, Vol. 1, pp.97-102 (2002).

    QR CODE