簡易檢索 / 詳目顯示

研究生: 郭家興
Chia-hsing Kuo
論文名稱: 生物可降解複合材料之分子配向性對機械強度之影響研究
Research of Molecular Orientation on Mechanical Properties of Biodegradable PLA Composites by Injectio molding
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-yeu Yang
郭文正
Wen-jeng Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 185
中文關鍵詞: 生物可降解材料聚乳酸氫氧基磷灰石機械性質試驗模內熱退火
外文關鍵詞: Bio-degradable, polylacticacid, hydroxyapatite, mechanical properties, in-mold annealing
相關次數: 點閱:172下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討射出成形製程參數對生物可降解材料聚乳酸(Poly lactic acid, PLA)的機械性質影響,以及分子配向性與拉伸強度的相互關係,最後利用氫氧基磷灰石(Hydroxyapatite, HA)作為填充材料,並利用矽烷(Silane)作為耦合劑,觀察不同PLA複材(PLA/HA, PLA/S-HA)之性質的改變,接著利用模內熱退火的方式改變試片的結晶度,並利用維克氏硬度試驗檢測試片硬度的變化。在研究方法上首先利用實驗設計找出對拉伸強度與衝擊強度影響最大的製程參數,並比較最高與最低拉伸強度試片的拉曼峰值強度比,最後利用熱示差掃描卡量計(Differential Scanning Calorimeter, DSC)與熱差分析(Differential Thermal Analyzer, DTA)觀察材料熱性質與熱穩定性的變化。從實驗結果得知拉伸強度受射出速度影響最大,且拉伸強度與拉曼峰值強度比會隨著射出速度的提升而增加,而保壓壓力為影響楊氏模數最重要的因子。各因子對衝擊強度值的影響性皆不顯著,試片的硬度隨著模內熱退火的時間增加而提升。PLA/S-HA的拉伸與衝擊性質皆優於PLA/HA,而PLA/S-HA5韌性較純PLA降低17.2%,PLA/HA5含量的機械性質與熱性質皆優於含量PLA/HA 10。本研究成果可應用於多孔性生物支架之製作。


This study is to investigate the influence of injection molding process for mechanical properties of poly lactic acid (PLA) composite materials, and to observe the relation between molecular orientation and tensile strength. Hydroxyapatite (HA) is used as a filler material, and silane is selected as a couple agent for improving the interface of PLA and HA. Design of experiment is used to find the most important factors for tensile strength and impact strength, and to compare the Raman intensity ratio with tensile strength of specimens. The differential scanning calorimetry (DSC) and differential thermal analyzer (DTA) are used to measure the thermal properties of PLA and PLA composite materials. Results show that the injection velocity is the most significant factor for the tensile strength of both PLA and PLA composite materials. Tensile strength and Raman intensity ratio have been increased with increasing injection velocity. The packing pressure is the most important parameter for Young’s modulus value of both materials. Impact strength of both material have not found significantly for current set-up of experiments. The degree of crystallinity of PLA specimen is increased with longer in-mold annealing time. The mechanical properties and thermal properties of PLA/S-HA are much better than those of PLA/HA. The toughness of PLA composites are lower than that of pure PLA. The mechanical properties and thermal properties of PLA/HA and PLA/S-HA content 5wt% are higher than those of content 10wt%. Result of this study can be applied on bio-medical prosthesis by injection molding of porous PLA composites.

摘要 I Abstract II 目錄 III 圖目錄 VII 符號表 XVI 第一章 緒論 1 1.1研究背景 1 1.2 研究目的與方法 6 1.3 論文架構 7 第二章 文獻回顧 9 2.1 PLA與PLA複合材料相關文獻與原理 9 2.1.1 PLA與複合材料機械性質文獻回顧 9 2.2 氫氧基磷灰石(HYDROXYAPATITE)表面改質文獻回顧 22 2.3 射出成形分子配向性文獻回顧與拉曼光譜原理 29 2.3.1射出成形分子配向性相關文獻回顧 29 2.3.2拉曼光譜儀原理 32 2.4聚乳酸射出成形相關專利回顧 36 2.5文獻回顧總結 37 第三章 射出成形製程與材料性質試驗原理 38 3.1複合材料的特性與填充物的分散與分佈 38 3.2射出成形製程模式 41 3.3 熱性質分析 46 3.3.1 熱示差掃描卡量計原理 (Differential Scanning Calorimeter, DSC) 46 3.3.2 熱差分析儀 (Differential Thermal Analyzer,DTA) 47 3.4 結晶度與機械性質的影響 49 3.5 矽烷耦合劑特性與目的 51 第四章 模具設計與模流分析 52 4.1模具設計 52 4.2 模流分析 54 第五章 實驗設備與方法 64 5.1實驗設備 64 5.1.1射出成形設備 64 5.1.2模溫控制設備 65 5.2量測設備 68 5.3分子配向性檢測實驗規劃 74 5.4 拉伸與衝擊試片射出成形實驗規劃 80 5.5 變異數分析 81 5.5量測方法與成品取樣方式 85 5.5.1 機械性質量測 85 5.5.2 熱性質量測 87 5.6 材料混鍊與HA表面改質 90 5.7 模內熱退火實驗規劃 93 第六章 實驗結果與討論 97 6.1 PLA與PLA複合材料熱性質分析 97 6.1.1 DSC檢測 97 6.1.2 DTA檢測 100 6.2 不同製程參數對PLA機械強度的影響 102 6.2.1 拉伸試驗與楊氏模數探討 102 6.2.2 拉伸強度與分子配向性探討 114 6.2.3 PLA材料衝擊強度探討 121 6.3 PLA/HA與PLA/S-HA複合材料性質試驗 125 6.3.1 PLA/HA與PLA/S-HA拉伸試驗與楊氏模數 125 6.3.2 PLA複合材料衝擊試驗 136 6.3.3 PLA與PLA複合材料硬度試驗 139 6.4 模內熱退火實驗 141 6.5 綜合結果與討論 145 第七章 結論與建議 147 7.1 結論 147 7.2 建議 149 參考文獻 150 附錄A FANUC ROBOSHOT α15-iA 機台規格 154 附錄B PLA 3001D材料性質表 155 附錄C DSC量測曲線圖 156 附錄D 楊氏模數估算Matlab程式 158 附錄E PLA拉伸試片應力應變圖 160

1.M.Vert, J. Feijen , A. Albertsson , G. Scoot , E. Chiellini , “Biodegradable polymers and plastics, Royal Society of Chemistry”, London, 64, 1992
2.信能塑膠股份有限公司,“PLA生命循環” ,http://www.snpla.com.tw/02p-pla01.html。
3.黃華郁,以PLA (Polylacticacid)及醫療廢料(Polycarbonate)射出成形合金,PEGA D&E,2010年
4.A. K. Schneider, U.S. Patent 2703316, 1995.
5.台技塑膠股份有限公司
6.M. Wang, R. Joseph, W. Bonfield, Hydroxyapatite-polyethylene composites for bone substitution: Effects of ceramic particle size and morphology, Biomaterials, Vol. 19, 2357-2366, 1998
7.E. Ural, K. Kesenci, L. Fambri, C. Migliares, E. Piskin, “Poly(D,L-cactide/e-caprolactone)/hydroxyapatite composites, Biomaterials”, Vol. 21, 2147-2154, 2000
8.T. Kasuga, Y. Ota, M. Nogami, Y. Abe, “Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers”, Biomaterials, Vol. 22, 19-23, 2001
9.X. Deng, J. Hao, C. Wang, “Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-de"cient hydroxyapatite nanocrystals”, Biomaterials, Vol. 22, 2867-2873, 2001
10.C. R. Kothapalli, M. T. Shaw, M. Wei, “Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties, Acta Biomaterialia”, Vol. 1, 653-662, 2005 .
11.L.M. Mathieu, P.-E. Bourban, J.-A.E. Manson, Processing of homogeneous ceramic/polymer blends for bioresorbable composites, Composites Science and Technology, Vol. 66, 1606-1614, 2006
12.陳立偉,“保壓過程之模溫控制對於聚乳酸、聚乳酸/洋麻纖維和聚乳酸/蒙脫土射出成形品的高次構造形成之影響”,國立交通大學,機械工程學系碩士論文,2009
13.A. K. Bledzki, A. Jaszkiewicz , D. Scherzer, “Mechanical properties of PLA composites with man-made cellulose and abaca fibres, Composites: Part A”, Vol. 40, 404-412, 2009
14.X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hua, “Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties, Acta Biomaterialia”, Vol. 5, 2693-2703, 2009
15.S. Pilla, A. Kramschuster, L. Yang, J. Lee, S. Gong, L. S. Turng, “Microcellular injection-molding of polylactide with chain-extender, Materials Science and Engineering”, Vol. 29, 1258-1265, 2009
16.林兆旋,“生醫複材之混練與骨釘製作",龍華科技大學,龍華科技大學學報,2009
17.L. Shen, H. Yang, J. Ying, F. Qiao, M. Peng, “Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites, Springer Science Business Media”, Vol. 20, 2259-2265, 2009
18.L. Nascimento, J. G. Perez, O. Santana, J. I. Velasco, M. L. Maspoch, E. F. Urquiza, “Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid)”, J Polym Environ, Vol. 18:654–660, 2010
19.S. Rakmae, Y. Ruksakulpiwat, W. Sutapun, N. Suppakarn, “Effects of Mixing Technique and Filler Content on Physical Properties of Bovine Bone-Based CHA/PLA Composites”, Journal of Applied Polymer Science, Vol. 122, 2433–2441, 2011
20.Z. Hong, P. Zhang, C. Hea, X. Qiua, A. Liua, C. Li, X. Chena, X. Jinga, “Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility”, Biomaterials, Vol. 26, 6296-6304, 2005
21.M. Todo, S. D. Park, K. Arakawa, Y. Takenoshita, “Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites”, Composites: PartA, Vol. 37,2221–2225, 2006
22.X. Wang, G.J. Song, T. Lou, “Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite”, Medical Engineering & Physics, Vol. 32, 391–397, 2008.
23.S.L. Yang, Z.H. Wu, W. Yang, M.B. Yang, “Thermal and mechanical properties of chemical crosslinked polylactide (PLA)”, Polymer Testing, Vol. 27, 957–963, 2008
24.S. Rakmae, Y. Ruksakulpiwat, W. Sutapun, N. Suppakarn, “Physical properties and cytotoxicity of surface-modified bovine bone-based hydroxyapatite/poly(lactic acid) composites”, Journal of Composite Materials, Vol. 45(12), 1259–1269, 2011
25.O.Murakami, K. Yamada, M. Kotaki, H. Hamada, “Evaluation of molecular orientation in injection molded parts with microscale features by Raman spectroscopy”, Journal of Applied Polymer Science, Vol. 112, 1607–1614, 2009
26.J. Martin, S. Margueron, M. Fontana, M. Cochez, P. Bourson, “Study of the Molecular Orientation Heterogeneity in Polypropylene Injection-Molded Parts by Raman Spectroscopy”, POLYMER ENGINEERING AND SCIENCE, 138-143, 2010
27.王晴遠,“高分子熔膠於彈臂搭接處之射出成形與分子配向性分析”,國立台灣科技大學,機械工程系論文,2010年。
28.葉敬賢,“複合式光學元件於振動式射出壓縮成形之殘留應力及光學品質元研究”, 國立台灣科技大學,機械工程系論文,2011年。
29.張清心,“生物可分解性射出配方之組成物”,TW200833772,2006
30.徐國瑞,“利用PLA混合料射出產品之製造方法”, TW 201002497,2008
31.越智隆志、崇晃、前田裕平,“聚乳酸纖維”, TW I222475,2008
32.官振豐、關旭強、鐘明吉、林焜章、陳嘉勳、彭新志、邱志豪、江金龍,“具有水交聯反應性質之生物分解性高分子複合材料及其製造方法”, TW I363780,2012
33.黃文盛,“ 混合PC/PMMA 材料應用於LED 照明元件射出成形研究”, 國立台灣科技大學,機械工程系論文,2012年。
34.C.-C. A. Chen, Handout of Manufacturing Analysis, Department of Mechanical Engineering, National Taiwan University of Science and Technology,2008.
35.Zeus Industrial Products, “Crystallinity in Plastics”,2007.
36.賀孝雍,“儀器分析”,曉園出版社,1980年,二版
37.拉奇股份有限公司,“Silane A-174材料特性”,2012

QR CODE