簡易檢索 / 詳目顯示

研究生: 鄒智元
Chih-Yuan Tsou
論文名稱: 聚乳酸/木粉、聚乳酸/聚對苯二甲酸丙二醇與聚乳酸/細菌纖維素複合材料之研究
Study on Properties of PLA/WF, PLA/PTT and PLA/BC Composites
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
孫茂誠
Maw-cherng Suen
李訓清
Hsun-Tsing Lee
邱文英
Wen-Yen Chiu
彭勝宏
Sheng-Hong Pong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 聚乳酸木粉馬來酸酐聚對苯二甲酸丙二醇細菌纖維素
外文關鍵詞: Polylactic Acid (PLA), Wood Flour (WF), Maleic Anhydride (MAH), Poly (Trimethylene Terephthalate) (PTT), Bacterial Cellulose (BC)
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究方向是以聚乳酸(PLA)為主要原料,分別以木粉(WF), 聚對苯二甲酸丙二醇 (PTT) 和細菌纖維素(BC) 做為添加物製備生物可分解複材,並進一步對機械性質、熱性質、表面型態、結構分析以及生物分解性等性能進行檢測分析,藉此得到最佳摻混比例,改善PLA所需要的性質。本論文共分為三大部分:
第一部份,首先提出使用天然廢棄物─木粉,作為聚乳酸的填充料,目的是可大幅度的降低材料的成本,由於聚乳酸和木粉之間的相容性不佳,並為了改善聚乳酸/木粉的機械性質,使用馬來酸酐(Maleic anhydride, MAH)接枝於聚乳酸,改質後的聚乳酸所具備的官能基可以與木粉上的羥基反應,而改善木粉與聚乳酸的介面相容性,進而提升複材的強度。
第二部份,為了提升聚乳酸的機械性質,也使用具有較有韌性的聚對苯二甲酸丙二酯(Poly Trimethylene Terephthalate, PTT)與聚乳酸進行共混複合材料,實驗證實除了可改善PLA的機械性質,也可提升PTT材料的結晶度,代表著PLA與PTT共混後將提升了成核特性。
第三部份,奈米級的材料可作為添加劑改變材料的特性,然而,材料的分散性也會影響其結果,本研究則提出一新穎的溶液混摻的方法,利用親水的纖維素先均勻分散在水溶液中,再與PLA混摻結合,使得奈米級的細菌纖維素均可勻分散在PLA之中,實驗結果也發現這種方法可大幅度改變材料的結晶度,證實細菌纖維素可幫助PLA結晶成核的效果。


In this thesis, we use different additives as an additive for polylactic acid (PLA). The properties of mechanical properties, thermal properties, surface type and structural analysis and biodegradability were analyzed and analyzed to obtain the best blending ratio and improve the properties required by PLA.
Maleic anhydride grafted poly(lactic acid) (PLA-g-MAH) was prepared by blending with wood flour (WF). PLA-g-MAH/WF had optimum tensile properties compared with PLA/WF. Scanning electron microscopic images indicated poor interfacial adhesion of the PLA/WF. It was enhanced after MAH was grafted onto PLA; the PLA-g-MAH/WF showed excellent compatible morphology. Results also revealed that the biodegradation of PLA and PLA-g-MAH was improved with increasing of WF content.
A poly(lactic acid)/poly(trimethylene terephthalate) (PLA/PTT) composite was prepared by melt blending to improve the PTT crystallization rate. Morphology analysis of PLA/PTT fractured surfaces demonstrated the compatibility of its components. Thermogravimetric analysis revealed that the thermodegradation of a PLA/PTT sample was higher than that of PLA. Differential scanning calorimetry was used to evaluate the crystallization behavior. The tests of PLA, PTT, and PLA/PTT specimens in tension showed that a percent elongation of the PLA/PTT composite was between that of PLA and PTT; however, the tensile strength of the PLA/PTT composite was similar to that of PLA.
A new method was adopted for blending PLA with bacterial cellulose (BC)—a nanomaterial—to improve the elongation at break, thermal properties, and crystallization rate of PLA. The morphology of the resulting PLA/BC nanocomposite was determined to analyze the BC dispersion in the blend. Thermogravimetric analysis revealed that the thermal degradation temperature of the nanocomposite was higher than that of the neat PLA.

中文摘要 I Abstract III 致謝 V 目錄 VI 符號索引 X 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 6 1.2.1 聚乳酸/木粉複合材料 6 1.2.2 聚乳酸/聚對苯二甲酸丙二醇複合材料 7 1.2.3 聚乳酸/細菌纖維素 7 第二章 研究背景與文獻回顧 8 2.1 聚乳酸/木粉複合材料 8 2.2 聚乳酸/聚對苯二甲酸丙二醇複合材料 11 2.3 聚乳酸/細菌纖維素複合材料 12 第三章 聚乳酸/木粉複合材料 16 3.1 簡介 16 3.2 樣品製備 17 3.3 實驗與結果 22 3.3.1 拉伸強力分析 22 3.3.2 熱性特性分析 24 3.3.3 埋土實驗 26 3.3.4 電子束掃描顯微鏡 28 3.3.5 傅里葉轉換紅外光譜 31 3.4 結論 33 第四章 PLA/PTT複合材料 37 4.1 簡介 37 4.2 樣品製備與實驗 38 4.3 實驗與結果 39 4.3.1 熱重損失分析: 39 4.3.2 拉伸強力測試: 41 4.3.3 電子束掃描顯微鏡: 43 4.3.4 差示掃描量熱儀分析: 45 4.3.5 XRD 50 4.4 結果討論 52 第五章 聚乳酸/纖維素複合材料 53 5.1 簡介 53 5.2 樣品製備 54 5.3 實驗與結果 58 5.3.1 拉伸強力分析 58 5.3.2 熱重損失分析 59 5.3.3 差示掃描量熱儀分析 62 5.3.4 電子束掃描顯微鏡 70 5.4 結果討論 75 第六章 總結 77 6.1 PLA/WF 77 6.2 PLA/PTT 79 6.3 PLA/BC 80 參考文獻 82 附錄 89 作者已發表期刊 89

[1] L.-T. Lim, R. Auras, M. Rubino, “Processing technologies for poly(lactic acid)”, Progress in Polymer Science Vol. 33, pp. 820–852, 2008.
[2] Auras R, Harte B, Selke S. “An overview of polylactides as packaging materials.” Macromol Biosci, Vol. 4 pp. 835–64, 2004.
[3] J.-T. Yeh, C.-H. Tsou, Y.-M. Li, H.-W. Xiao, C.-S. Wu, W.-L. Chai, Y.-C. Lai and C.-K. Wang, “The compatible and mechanical properties of biodegradable poly(Lactic Acid)/ethylene glycidyl methacrylate copolymer blends” Journal of Polymer Research, Vol. 19, No. 2, 9766, 2012.
[4] J.-T. Yeh, C.-H. Tsou, W. Lu, Y.-M. Li, H.-W. Xiao, C.-Y. Huang , K.-N. Chen, C.-S. Wu and W.-L. Chai, “Compatible and tearing properties of poly(lactic acid)/poly(ethylene glutaric-co-terephthalate) copolyester blends”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 48, No. 9, pp. 913–920, 2010.
[5] C.-H. Tsou, H.-T. Lee, H.-A. Tsai, H.-J. Cheng, and M.-C. Suen, “Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender”, Polymer Degradation and Stability, Vol. 98, No. 2, pp.643–650, 2013.
[6] C.-H. Tsou, H.-T. Lee, M. De Guzman, H.-A. Tsai, P.-N. Wang, H.-J. Cheng, and M.-C. Suen, “Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O”, Polymer Bulletin, Vol. 72, No. 7, pp. 1545–1561, 2015.
[7] C.-H. Tsou, B.-J. Kao, M.-C. Suen, M.-C. Yang, T.-Y. Wu, C.-Y. Tsou, J.-C. Chen, W.-H. Yao, C.-K. Chu, X.-M. Tuan, J.-Z. Hwang, W.-S. Hong, K.-R. Lee and J.-Y. Lai, “Crystallisation behaviour and biocompatibility of poly(butylene succinate)/poly(lactic acid) composites”, Materials Research Innovations, Vol. 18, pp. S2372–S2376, 2014.
[8] J. Yang, G. Ding, Z. Wang, and C. Wang, “Morphologies, mechanical properties and thermal stability of poly(lactic acid)/waste rubber powder blends”, Asian Journal of Chemistry, Vol. 26, No. 6, pp. 1778–1780, 2014.
[9] C.-H. Tsou, M.-C. Suen, W.-H. Yao, C.-S. Wu, J.-T. Yeh, C.-Y. Tsou, J.-C. Chen, S.-M. Lin, W.-S. Hung, M. De Guzman, C.-C. Hu and K.-R. Lee, “Preparation and characterization of Bioplastic-Based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer”, Materials, Vol. 7, No. 8, pp. 5617–5632, 2014.
[10] C.-H. Tsou, W.-S. Hung, C.-S. Wu, J.-C. Chen, C.-Y. Huang, S.-H. Chiu, C.-Y. Tsou, W.-H. Yao, S.-M. Lin, C.-K Chu, C.-C. Hu, K.-R. Lee, and M.-C. Suen, “New composition of maleic-anhydride-grafted poly(Lactic Acid)/rice husk with methylenediphenyl diisocyanate”, Materials Science (Medžiagotyra), Vol. 20, No. 4, pp.446–451, 2014.
[11] J. P. Mofokeng, A. S. Luyt, T. Tábi and J. Kovács, “Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices”, Journal of Thermoplastic Composite Materials, Vol. 25, No. 8, pp. 927–948, 2012.
[12] 王艷玲,「聚乳酸基木塑複合材料」,碩士論文,上海交通大學,上海市,2008。
[13] S.-H Lee, and S. Wang, “Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent”, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 1, pp.80–91, 2006.
[14] C. Clemons, “Wood-plastic composites in the United States: The interfacing of two industries”, Forest Prod. J. 52, pp.10–18, 2002.
[15] V. E. Reinsch and S. S. Kelley, “Crystallization of poly(hydroxybutyrate-co- hydroxyvalerate) in wood fiber-reinforced composites”, “Journal of Applied Polymer Science” Vol. 64, No. 9, pp. 1785–1796, 1997.
[16] E. G. Fernandes, M. Pietrini, and E. Chiellini, “Bio-based polymeric composites comprising wood flour as filler”, Biomacromolecules, Vol. 5, No. 4, 1200–1205, 2004.
[17] C.-S. Wu, “Assessing biodegradability and mechanical, thermal, and morphological properties of an acrylic acid-modified poly(3-hydroxybutyric acid)/wood flours biocomposite”, Journal of Applied Polymer Science, Vol. 102, No.4, 3565–3574, 2006.
[18] B. L. Shah, S. E. Selke, M. B. Walters, and P. A. Heiden, “Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide”, Polymer Composites, Vol. 29, No. 6, pp. 655–663, 2008.
[19] E. Sykacek, W. Schlager, N. Mundigler, “Compatibility of softwood flour and commercial biopolymers in injection molding”, Polymer Composites, Vol. 31, No. 3, pp. 443–451, 2010.
[20] A. Gregorova, M. Hrabalova, R. Kovalcik, R. Wimmer, “Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites”, Polymer Engineering and Science, Vol. 51, No. 1, pp. 143–150, 2011.
[21] A. Gregorova, M. Hrabalova, R. Wimmer, B. Saake, C. Altaner, “Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis”, Journal of Applied Polymer Science, Vol. 114, No. 5, 2616–2623, 2009.
[22] A. Gregorova, R. Wimmer, M. Hrabalova, M. Koller, T. Ters, N. Mundigler, “Effect of surface modification of beech wood flour on mechanical and thermal properties of poly (3-hydroxybutyrate)/wood flour composites”, Holzforschung, Vol. 63, No. 5, pp. 565–570, 2009.
[23] M. Hrabalova, A. Gregorova, R. Wimmer, V. Sedlarik, M. Machovsky, N. Mundigler, “Effect of wood flour loading and thermal annealing on viscoelastic properties of poly(lactic acid) composite films”, Journal of Applied Polymer Science, Vol. 118, No. 3, pp. 1534–1540, 2010.
[24] T. Qiang, D. M. Yu, and H. H. Gao, “Wood flour/polylactide biocomposites toughened with polyhydroxyalkanoates”, Journal of Applied Polymer Science, Vol. 124, No.3, pp. 1831–1839, 2012.
[25] E. Petinakis, L. Yu, G. Edward, K. Dean, H.S. Liu, A. D. Scully, Journal of Polymers and the Environment, Vol. 17, No. 2, pp. 83-94, 2009.
[26] S. Pilla, S. Gong, E. O’Neill, R. M. Rowell, A. M. Krzysik, “Polylactide-pine wood flour composites”, Polymer Engineering and Science, Vol. 48, No. 3, 578–587, 2008.
[27] L. M. Matuana, O. Faruk, “Effect of gas saturation conditions on the expansion ratio of microcellular poly(lactic acid)/wood-flour composites”, EXPRESS Polymer Letters, Vol. 4, No. 10, pp. 621–631, 2010.
[28] L. M. Matuana, Q. Li, “Statistical Modeling and Response Surface Optimization of Extruded HDPE/Wood-Flour Composite Foams”, Journal of Thermoplastics Composite Materials, Vol. 17, No. 2, pp. 185–199, 2004.
[29] C.-Y. Tsou, C.-L. Wu, C.-H. Tsou, S.-H. Chiu, M.-C. Suen, W.-S. Hung, “Biodegradable Composition of Poly(Lactic Acid) from Renewable Wood Flour”, Polymers Science Series B, Vol. 57, No. 5, pp. 473–480, 2015.
[30] S.-L. Yang, Z.-H. Wu, W. Yang, and M.-B. Yang, “Thermal and mechanical properties of chemical crosslinked polylactide (PLA)”, Polymer Testing, Vol. 27, Issue 8, 957–963, 2008.
[31] X. He and D. Yang, “Banded spherulites grown from poly(trimethylene terephthalate) solution-cast film”, J. Wuhan. Univ. Technol. Sci. Ed., Vol. 23, No. 6, 791–794, 2008.
[32] H. H. Chuah, “Orientation and Structure Development in Poly(trimethylene terephthalate) Tensile Drawing”, Macromolecules, Vol. 34, No. 20, 6985–6993 (2001).
[33] H. Brown, H. Chuah, J. M. Olvera, A. Wasiak, P. Sajkiewicz, and A. Ziabicki, “Deformation of undrawn poly(trimethylene terephthalate) (PTT) fibers”, Polymer, Vol. 42, No. 16, 7153–7160 (2001).
[34] J. Zhang, “Study of poly(trimethylene terephthalate) as an engineering thermoplastics material”, Journal of Applied Polymer Science, Vol. 91, No. 3, 1657–1666 (2004).
[35] H. B. Ravikumar, C. Ranganathaiah, G. N. Kumaraswamy, G.N. Kumaraswamy, and S. Thomas, “Positron Annihilation and Differential Scanning Calorimetric Study of Poly(trimethylene terephthalate)/EPDM Blends”, Polymer, Vol. 46, No. 7, 2372–2380 (2005).
[36] P. A. Tzika, M. C. Boyce, and D. M. Parks, “Micromechanics of deformation in particle-toughened polyamides” Journal of the Mechanics and Physics of Solids, Vol. 48, No. 9, 1893–1929 (2000).
[37] K. Wang, Y. Chen, and Y. Zhang, “Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/organoclay ternary nanocomposites”, Polymer, Vol. 49, No. 15, 3301–3309 (2008).
[38] D. Juárez, S. Ferrand, O. Fenollar, V. Fombuena, and R. Balart, “Improvement of thermal inertia of styrene-ethylene/butylene-styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs)”, European Polymer Journal, Vol. 47, No. 2, 153–161, 2011.
[39] N. R. Savadekar and S. T. Mhaske, “The effect of vulcanized thermoplastics and SEBS on the impact strength of PPT”, Polymer-Plastics Technology and Engineering, Vol. 49, No. 15, 1499–1505, 2010.
[40] 何政樺,「細菌纖維單膜及複合膜之製備研究應用」,碩士論文,國立台北科技大學,台北市,2008。
[41] 陳怡欣,「以為乳液技術控制細菌纖維素膜之型態及孔隙率並應用於鋰電池隔離膜之研究」,碩士論文,國立雲林科技大學,雲林縣,2015。
[42] L. Urbina, I. Algar, C. García-Astrain, A. González, M. Corcuera, A. Eceiza, and A. Retegi, “Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes”, Journal of Applied Polymer Science, Vol.133, No. 28, 2016.
[43] E. J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf, “Improved production of bacterial cellulose and its application potential”, Polymer Degradation and Stability, Vol. 59, No. 1-3, pp. 93-99, 1998.
[44] M. H. Deinema and L. P. T. M. Zevenhuizen, “Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation”, Archives of Microbiology, Vol. 78, No.1, pp.42-57, 1971.
[45] P. J. Blanc, “Characterization of the tea fungus metabolites”, Biotechnology Letters, Vol. 18, No. 2, pp. 139-142, 1996.
[46] M. Shoda, Y. Sugano, “Recent advances in bacterial cellulose production, Biotechnology and Bioprocess Engineering, Vol. 10, No. 1, pp. 1–8, 2005.
[47] R. M. Kay, “Dietary fiber”, Journal of Lipid Research, Vol. 23, pp. 221–242, 1982.
[48] B. O. Schneeman “Dietary fiber: Physical and chemical properties, method of analysis, and physiological effects”, Food Technology, Vol. 40, No. 2, pp. 104–110, 1986.
[49] A. Okiyama, H. Shirae, H. Kano, and S. Yamanaka, “Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti”, Food Hydrocolloids, Vol. 6, No.5, pp. 471–477, 1992.
[50] A. J. Brown, “An acetic acid ferment which forms cellulose”, Journal of the Chemical Society, Vol.49, pp.432–439, 1886.
[51] M. E. Embuscado, J. S. Marks, and J. N. BeMiler, “Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology”, Food Hydrocolloids, Vol. 8, No.5, pp. 419–430, 1994.
[52] A. N. Nakagaito, A. Fujimura, T. Sakai, Y. Hama, and H. Yano, “Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process”, Composites Science and Technology Vol. 69, No.7-8, pp. 1293–1297, 2009.
[53] L. Urbina, I. Algar, C. García-Astrain, N. Gabilondo, A. González, M. Corcuera, A. Eceiza, A. Retegi, “Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes”, Journal of Applied Polymer Science, Vol. 133, No. 28, 43669, 2016.
[54] M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B.V. Lebedev, B. Wunderlich, “Heat capacity of poly(trimethylene terephthalate).” Journal of Polymer Science Part B Polymer Physics, Vol. 36, No. 14, pp. 2499–2511, 1998.
[55] C.-Y. Tsou, C.-L. Wu, Y.-C. Tseng, S.-H. Chiu, M.-C. Suen, W.-S. Hung, and C.-H. Tsou, “Isothermal Crystallization Kinetics Effect on the Tensile Properties of PLA/PTT Polymer Composites”, Strength of Materials, Vol. 49, No. 1, pp. 171–179, 2017

無法下載圖示 全文公開日期 2022/07/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE