簡易檢索 / 詳目顯示

研究生: 高子崴
Tzu-Wei Kao
論文名稱: 低碳鋼複合式熱浸鍍 Zn–Al–Mg 之微觀結構及耐蝕性研究
Microstructure and Corrosion Behavior of Zn-Al-Mg Coating on Low Carbon Steel by Second-Hot-Dip Process
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 林朝松
鄭偉鈞
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 低碳鋼熱浸鍍Zn-Al-Mg二次浸鍍
外文關鍵詞: Low Carbon Steel, Hot dip Zn-Al-Mg, Second Hot dip
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用低碳鋼為底材,以複合式熱浸鍍 Zn 和熱浸鍍 Zn– 5wt. % Al–2 wt. % Mg,於 425 ℃ ~ 475 ℃ 進行 60 秒到 600 秒的熱浸鍍,研究不同溫度時間參數對鍍層生長過程的影響及不同鍍層形貌的耐蝕性。結果顯示,複合式熱浸鍍可形成五層結構,最外層的鍍層與鋅鋁鎂鍍浴的成分相同,而由外而內又可分為Zn + MgZn2 + Al86Fe14層、Fe2Al5層、Zn + (Zn+MgZn2) + (Zn+MgZn2+Al)inner 層、Fe2Al5Zn + Zn層。隨第一鍍(鍍鋅)時間拉長,因鐵鋅介金屬支架成長,第二鍍(鍍鋅鋁鎂)後整體鍍層厚度也隨之增加。當浸鍍鋅鋁鎂時間增長,在 240 秒後僅有 Fe2Al5Zn + Zn層會成長。第一鍍的鍍鋅時間主要影響整體鍍層厚度,第二鍍的溫度及時間影響外層披覆的鋅鋁鎂厚度及Fe2Al5Zn + Zn層厚度。經研究結果顯示,鍍層厚度主要影響耐蝕性,含鎂鍍層 Zn + (Zn+MgZn2) + (Zn+MgZn2+Al)outer 層、Zn + MgZn2 + Al86Fe14層、Zn + (Zn+MgZn2) + (Zn+MgZn2+Al)inner 層之厚度總合和愈厚,耐蝕性愈為提升。


In this study, for research how second hot-dip influence coatings. Low carbon steel was used as the substrate, Zn and Zn – 5 wt. % Al – 2 wt. % Mg was second hot-dipped at 425 ℃ ~ 475 ℃ for 60 seconds to 600 seconds. The experiment shows that coating could be result in five layers. The outer layer had the same composition with the Zn - Al - Mg alloy bath and other four layers had been named as Zn + MgZn2 + Al86Fe14 layer, Fe2Al5 layer, Zn + (Zn+MgZn2) + (Zn+MgZn2+Al)inner layer, Fe2Al5 + Zn layer from outside to inside. Since the longer time did the first-dip goes, the whole layer went thick after the second-dip, but the Fe2Al5 + Zn layer inside reduce. When you got longer time for second-dip Zn-Al-Mg, the layer only goes thick before 240 seconds. It could be observed that the Fe composition decrease in Zn + (Zn+MgZn2) + (Zn+MgZn2+Al)inner at 425 ℃ ~ 475 ℃. Due to the study, the first-dip mainly affect the thinkness of whole layer and different temperature and time in second-dip had influence on the growth of Fe2Al5 + Zn layer. According to EIS experiments, the corrosion resistance went better when layers contained in Mg went thicker.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 熱浸鍍鋅 3 2.1.1 熱浸鍍鋅目的 3 2.1.2 熱浸鍍鋅製程 4 2.1.3 熱浸鍍鋅微觀結構 5 2.1.4 熱浸鍍鋅抗蝕性 7 2.2 熱浸鍍鋅浴添加鋁 9 2.2.1 熱浸鍍鋅浴添加微量鋁 10 2.2.2 熱浸鍍鋅浴裡添加5 wt. % Al 12 2.2.3 熱浸鍍鋅浴裡添加55 wt. % Al 15 2.3 熱浸鍍鋅鋁浴添加鎂 17 第三章 實驗方法 21 3.1 實驗流程 21 3.2 試片製備 22 3.3 複合式熱浸鍍鋅及鋅鋁鎂製程 23 3.3.1 熱浸鍍前處理 23 3.3.2 熱浸鍍鋅 24 3.3.3 熱浸鍍浴製備 25 3.4 熔融鋅鋁鎂湯擴散試驗 26 3.5 EIS交流阻抗試驗 27 第四章 實驗結果 29 4.1 鋅鋁鎂熔湯顯微組織分析 29 4.2 熱浸鍍層微觀分析 31 4.2.1 熱浸鍍鋅 31 4.2.2 不同熱浸鍍鋅時間之複合式鍍層 35 4.2.3 不同熱浸鍍鋅鋁鎂時間之複合式鍍層 43 4.2.4 不同熱浸鍍鋅鋁鎂溫度之複合式鍍層 50 4.3 EIS交流阻抗耐蝕性分析 55 第五章 討論 60 5.1 熱浸鍍鋅時間對鍍層的影響 60 5.2 熱浸鍍鋅時間對二次浸鍍鍍層的影響 62 5.3 熱浸鍍鋅鋁鎂時間對二次浸鍍鍍層的影響 64 5.4 熱浸鍍鋅鋁鎂溫度對二次浸鍍鍍層的影響 71 5.5 鎂對耐蝕性的作用 72 第六章 結論 74 參考文獻 75

參考文獻
[1] 何明錦,鋼結構建築防銹蝕工法之研究,內政部建築研究所研究報告,民國96年。
[2] J. Elvins, J. A. Spittl and D. A. Worsley, “Microstructural Changes in Zinc Aluminium Alloy Galvanising as a Function of Processing Parameters and Their Influence on Corrosion”, Corrosion Science, Volume 47, Issue 11 (2005) p. 2740.
[3] A. Ramus Moreira, Z. Panosian and P. L. Camargo, “Zn/55Al Coating Microstructure and Corrosion Mechanism”, Corrosion Science, Volume 48, Issue 3 (2006) p. 564.
[4] E. Diler, S. Rioual, B. Lescop, D. Thierry and B. Rouvellou, “Chemistry of Corrosion Products of Zn and MgZn Pure Phases Under Atmospheric Conditions”, Corrosion Science, Volume 65 (2012) p. 178.
[5] 落合征雄, 大羽浩: 2浴法により製造された Zn-Al 系合金めつき鋼線の金属問化合物層の構造と腐食挙動, 铁と钢2号, (1989) p. 298.
[6] 鍍鋅鋼捲產品手冊,中鋼公司。
[7] G. J. Harvey and P. D. Mercer, “Aluminum-rich Alloy Layers Formed During the Hot Dip Galvanizing of Low Carbon Steel”, Metallurgical Transactions, Volume 4 (1973) p. 619.
[8] A. R. Marder, “The Metallurgy of Zinc-coated Steel”, Progress in Materials Science, Volume 45, Issue 3, (2009) p. 191.

[9] N. Pistofidis, D. Chaliampalias and G. Vourlias, “Study of Growth Mechanism of Zinc Hot Dip Galvanising Coatings”, Surface Engineering, Volume 25, Issue 8, (2009) p. 594.
[10] C. E. Jordan and A. R. Marder, “Fe-Zn Phase Formation in Interstitial-free Steel Hot-dip Galvanized at 450 °C”, Material Science, Volume 32, Issue 21 (1997) p. 5593.
[11] S. Klinaku, T. Dilo and N. Syla, “The Microstructure and Hardness of Hot Dip Galvanized Steel During Wire Drawing”, AIP Conference Proceedings, Volume 1203 (2010) p. 656.
[12] Gary W. Dallin, “Continuous Hot-dip Galvanizing-process and Products”, Galvanizing (2015).
[13] C. E. Jordan and A. R. Marder, “Fe-Zn Phase Formation in Interstitial-free Steel Hot-dip Galvanized at 450 °C: Part II 0.2 wt. % Al-Zn baths”, Materials Science, Volume 32 (1997) p.5603.
[14] A. R. Miedema, A. K. Niessen, F. R. Deboer, R. Boom and W. C. Matten, “Cohesion in Metals: Transition Metal Alloys”, Cohesion and Structure, Volume 1 (1989) p. 651.
[15] G. K. Mandal, R. Balasubramaniam and S. P. Mehrotra, “Theoretical Investigation of the Interfacial Reactions During Hot-dip Galvanizing of Steel”, Metallurgical and Materials Transactions A, Volume 40, Issue 3, (2009) p. 637.
[16] H. Klang and R. Kiusalaas, “Solidification Apects of Zinc Layer on Continuously Hot-dipped Galvanised Steel Strip”, Proceedings of the Society for Analytical Chemistry (1987) p. 361.
[17] 稲垣淳一, 櫻井理孝, 渡辺豊文: 铁と钢, 79卷11号, (1993) p. 1273.
[18] T. Kato, K. Nunome, K. Kaneko and H. Saka, “Formation of the ζ Phase at an Interface Between an Fe Substrate and a Molten 0.2 mass % Al-Zn During Galvannealing”, Acta Material, Volume 48, Issue 9 (2000) p. 2257.
[19] A. Yoshitaka and A. Masahiro, “Transformation of Fe-Al Phase to Fe-Zn Phase on Pure Iron During Galvanizing”, Material Science and Engineering A, Volume 254, Issue 1-2, (1998) p. 305.
[20] B. Merkely, “The effect of zinc on cold rolling textures in cast aluminum”, Material Science and Engineering, (2016).
[21] “Zinc-5% Aluminum Alloy-Coated Steel Sheet”, GalvInfoNote (2017).
[22] D. Phelan, B. J. Xu and R. Dippenar, “Formation of Intermetallic Phases on 55 wt. % Al-Zn-Si hot dip strip”, Materials Science and Engineering A, Volume 420, Issues 1-2, (2006) p. 144.
[23] L. Li, Y. Liu and H. Kao, “Phase Formation Sequence of High-temperature Zn-4Al-3Mg Solder”, Journal of Science : Materials in Electronics, Volume 24 (2013) p. 336.
[24] P. Lianga, T. Tarfab and J. A. Robinson, “Experimental Investigation and Thermodynamic Calculation of the Al-Mg-Zn System”, Thermochimica Acta, Volume 314, Issue 1-2 (1998) p. 87.
[25] Y. Xie, A. Du, X. Zhao, R. Ma, Y. Fan and X. Cao, “Effect of Mg on Fe-Al Interface Structure of Hot-dip Galvanized Zn-Al-Mg Alloy Coatings”, Surface and Coatings Technology, Volume 337, (2018) p. 313.

[26] S. Schurz, G. H. Luckeneder and M. Fleischanderl, “Chemistry of Corrosion Products on Zn-Al-Mg Alloy Coated Steel”, Corrosion Science, Volume 52, Issue 10, (2010) p. 3271.
[27] M. Dutta, A. K. Halder and S. B. Singh, “Morphology and Properties of Hot-dip Zn-Mg and Zn-Mg-Al Alloy Coatings on Steel Sheet”, Surface and Coatings Technology, Volume 205, Issue 7, (2010) p. 2578.
[28] 沓名宗春, ラソゥド マノジュ, 菰田忠, 篭原幸彦: 低炭素鋼とアルミニウム合金のロール圧接継手の接合機構に関する研究, Quarterly Journal of the Japan Welding Society, 21卷1号, (2003) p. 101.
[29] V. Raghavan, “Al-Fe-Zn (Aluminum-Iron-Zinc)”, Journal of Phase Equilibria and Diffusion, Volume 29, (2003) p. 431
[30] J.B. Qiang, D. H. Wang, C. M. Bao, Y. M. Wang, W. P. Xu, M. L. Song and C. Dong, “Formation Rule for Al-based Ternary Quasi-crystals: Example of Al-Ni-Fe Decagonal Phase”, Journal of Materials Research, Volume 16, Issue 9, (2001) p. 2653.
[31] Z. Ding, Z. Li, Y. Zhao and Y. Chen, “Formation and Transformation of Al–Fe Phases After Friction Stir Processing”, Material Science and Technology, Volume 35, Issue 15, (2019) p. 1898.
[32] R. R. Altunin, E. T. Moiseenko and S. M. Zharkov, “Structural Phase Transformations During a Solid-state Reaction in a Bilayer Al/Fe Thin-film Nanosystem”, Physics of the Solid State, Volume 62, (2019) p. 200.

[33] P. Volovitch, C. Allély, K. Ogle, “Understanding corrosion via corrosion products characterization : I. Case study of the role of Mg alloying in Zn-Mg coating on steel”, Corrosion Science, Volume 51, (2009) p. 1251.
[34] N.C. Hosking, M.A. Strom, P.H. Shipway, C.D. Rudd, “Corrosion resistance of zinc-magnesium coated steel”, Corrosion Science, Volume 49, (2007) p. 3669.

無法下載圖示 全文公開日期 2023/09/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE