簡易檢索 / 詳目顯示

研究生: 曾士榮
Shih-Rong Zeng
論文名稱: AISI 1020低碳鋼表面被覆氮化矽陶瓷粉末及合金元素添加不同比例稀土元素氧化釹之微結構與耐磨耗研究
The Effects of Rare Earth Element Nd2O3 on Microstructure and Wear Performance in AISI 1020 Clad with Si3N4 Powder and Different Alloying Elements
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇裕軒
Yu-Hsuan Su
丘群
Chun Chiu
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 158
中文關鍵詞: 氮化矽稀土元素氧化釹氬銲被覆磨耗
外文關鍵詞: Silicon nitride, Neodymium oxide
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將氮化矽(Si3N4)混合合金粉末(Ti、Nb、Ni、Fe)並添加不同比例稀土元素氧化釹(Nd2O3)預置於低碳鋼基材上,進行氬銲(gas tungsten arc welding;GTAW)被覆,探討被覆層顯微組織、強化相、晶體結構、機械性質、硬度檢測等進行分析。並以銷對圓盤(Pin-on-Disk)方式使用迴轉式磨耗試驗機來進行磨耗試驗,評估被覆層耐磨耗能力。
    研究結果顯示,50%Si3N4與添加不同比例(3%、4.5%、6%)氧化釹(Nd2O3)被覆層皆會臨場(in-situ)合成FCC晶體結構的Ti(C,N)顆粒狀析出物與BCC結構葉脈狀Fe3Si強化相。
    添加Nd2O3之被覆層可以降低稀釋率,基材稀釋效應減弱,在被覆層內合金元素濃度就高,相對強化相就比較多,促進硬度值15.6Gpa之初晶長條狀強化相Fe16Nb6Si7的析出,並且使葉脈狀強化相Fe3Si減少。其中以44%Si3N4+6%Nd2O3被覆層有最高的平均硬度,約為HV0.3940.9。
    磨耗試驗方面,添加稀土元素氧化釹(Nd2O3)被覆層試片能大幅提升耐磨耗能力,其中以45.5%Si3N4+4.5 %Nd2O3被覆層有較佳的耐磨耗能力,因長條狀析出物Fe16Nb6Si7晶粒無太過細小或粗大的現象,使其在磨耗過程中的衝擊效應下不易破碎,而能有效保護摩擦表面。


    In this study, Si3N4 ceramic powder and Ti, Nb, Ni, Fe alloy powders mixed with different percentage of Nd2O3 rare element were applied to clad onto AISI 1020 low carbon steel by gas tungsten arc welding(GTAW) process. The microstructure, strengthening phase, crystal structure, mechanical property and hardness examination of clad layers were investigated. In addition, rotating tribometer with the pin-on-disc method was used to conduct the wear test. It was evaluated with wear resistance performance of clad layers.
    The experiment results show that FCC crystal structure of Ti(C,N) particle precipitates which synthesized in-situ and BCC crystal structure of Fe3Si vein-like strengthening phase were had in the clad layers which were mixed with 50%Si3N4 and different percentage Nd2O3.
    Mixing with Nd2O3 clad layers can reduce dilution rate because substrate dilution effect was reduced. In the clad layer,when alloy element concentration was higher, strengthening phase was relatively increased. It promoted to separate out Fe16Nb6Si7 long precipitates of primary crystal which hardness value was 15.6GPa, and Fe3Si vein-like strengthening phase were reduced. Among of all clad layers,which the 44%Si3N4+6%Nd2O3 was the highest hardness whose value was HV0.3940.9.
    The wear test results indicate that clad layers which were mixed with different percentage Nd2O3 were increased the wear resistance, especially for the 45.5%Si3N4+4.5%Nd2O3 clad layer which was had the best wear resistance.Because Fe16Nb6Si7 long precipitates of grains didn’t have more finer or coarsening phenomenon. During wear test of impact effect, long precipitates were not easily broken so that it can protect the friction surface effectively.

    摘要 I Abstract II 致謝 III 表索引 VII 圖索引 VIII 第一章 前言 第二章 文獻回顧 第三章 實驗方法與步驟 第四章 結果與討論 第五章 結論與建議 參考文獻

    1. K. Holmberg, A. Matthews, “Coatings tribology: properties, techniques and applications in surface engineering”, Amsterdam﹐Elservier, 1994.
    2. M. Eroğlu, N. Özdemir, “Tungsten-inert gas surface alloying of a low carbon steel”, Surface and Coatings Technology, 154, pp.209-217, 2002.
    3. Y. S. Tian, C. Z. Chen, L. X. Chen and Q. H. Huo, “Microstructures and wear properties of composite coatings produced by laser alloying of Ti–6Al–4V with graphite and silicon mixed powders”, Materials Letters, Vol. 60, pp.109-113, 2006.
    4. R.L. O'Brien , “Welding processes”, Vol. 2, 1991.
    5. Serope Kalpakjian, Steven R. Schmid, “Manufacturing engineering and technology,seventh edition”, Pearson Education South Asia, 2014.
    6. 王振欽,焊接學,高立圖書有限公司,2006
    7. I.M. Hutchings, “Tribology : friction and wear of engineering materials”, Boca Raton, CRC Press, 1992.
    8. H.G. Fan, H.L. Tsai, S.J. Na, "Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, International Journal of Heat and Mass Transfer", 44, pp.417-428., 2001.
    9. S.W. Wang, Y.C. Lin, Y.Y. Tsai, “The effects of various ceramic-metal on wear performance of clad layer, the 6th Asia Pacific Conference on Materials Processing (6th APCMP)”, Taipei, 2003.
    10. 林原慶、王世衛、蔡益元, 合金元素對中碳鋼表面被覆陶瓷粉末耐磨耗性能之影響 中國機械工程學會第十七屆學術研討會論文集, 第四冊製造與材料 , 789-795 , 高雄、高雄第一科技大學, 2000.
    11. 林育奇,Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究,國立台灣科技大學碩士學論文,2010。
    12. 吳佩妤,AISI 1020低碳鋼表面被覆多元合金之微結構與耐磨耗研究,國立台灣科技大學碩士學論文,2015。
    13. L. Zhang, D. Sun, and H. Yu, “Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding”, Materials Science and Engineering, vol.A490, pp.57-61, 2008.
    14. X.H. Wang, M. Zhang, X.M. Liu, S.Y. Qu, and Z.D. Zou, “Microstructure and Wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding”, Surface and coatings Technology, vol.202, pp.3600-3606, 2008.
    15. Y.J. Dong, and H.M. Wang, “Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti-Ni-Si intermetallic composite coating”, Surface and coatings Technology, vol.204, pp.731-735, 2009.
    16. 吳雨峰,合金元素及雷射掃描製程對不鏽鋼表面氮化矽被覆層顯為組織及耐磨耗性能的影響,國立台灣科技大學碩士學論文,2003。
    17. William F. Smith, “Foundations of materials Science and Engineering”, 3E, Mc Graw Hill, 2005.
    18. Masatomo Yashima, Yoshiaki Ando, Yasunori Tabira, “Crystal Structure and Electron Density of α-Silicon Nitride: Experimental and Theoretical Evidence for the Covalent Bonding and Charge Transfer”, J. Phys. Chem. B, pp.3609-3613, 2007.
    19. 汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,民國八十三年。
    20. W.T. Tsai, T.H. Lai, and J.T. Lee, “Laser Surface Alloying of Stainless Steel with Silicon Nitride”, Materials Science and Engineering, Vol.A183, pp.239-245(1994).
    21. “Material Properties Charts” ,available at:http://www.ferroceramic
    .com/silicon_nitride.htm, 2012
    22. 錢景常譯 , 稀土族十五個元素 , 原子能文庫/鄭振華 主編,1969.
    23. K.L Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, “Microstrural characteristics of laser clad coatings with rare earth metal elements”, Journal of Processing Technology 139, pp.448-452, 2003.
    24. Y. S. Tian, C. Z. Chen, L. X. Chen, Q. H. Huo, “Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique”, Scripta Materialia 54, pp.847-852, 2006.
    25. Zhenyu Zhang, Zhiping Wang, Bumv Liang, Peiqing La, “Effects of CeO2 on friction and wear characterisitics of Fe-Ni-Cr alloy coatings”, Tribology International 39,pp.971-978, 2006.
    26. L.Zhang, D.Sun, H.Yu, “Characteristics of plasma cladding Fe-based alloy coatings with rare earth metal elements”, Materials Science and Engineering A, v 452-453, Apr 15, pp.619-624, 2007.
    27. 黃基華,稀土元素(氧化釹,氧化鈰)對中碳鋼表面被覆陶瓷粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,2003。
    28. K. Holmberg, A. Matthews, “Coatings Tribology”, Elsevier, Armsterdam, Netherland, 1994.
    29. J.F. Lancaster, “Metallurgy of welding”, London, Chapman & Hall, 1993.
    30. C.R. Heiple, J.R. Roper, “Mechanism for minor element effect on GTA fusion zone geometry”, Welding research, pp.97-102, 1982.
    31. S.Mishra, T.J. Lienert, M.Q. Johnson, T.D. Roy, “An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations”, Acta Materialia, 56, pp.2133-2146, 2008.
    32. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,工程材料科學,全華科技圖書股份有限公司,西元1996年
    33. G.E. Dieter, “Mechanical metallurgy”, London, 1988.
    34. A. Amirsadeghi, and M. Heydarzadeh Sohi, “Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI”, Journal of materials Processing Technology, vol.201, pp.673-677, 2008.
    35. Y.C. Lin, Y.H. Cho, “Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ”, Surface and Coatings Technology, 203, pp.1694-1701, 2009.
    36. Hysitron, “TI 950 TriboIndenter User Manual”, pp.199-220, 2014
    37. 丁志華、管正平、黃新言、戴寶通, 奈米壓痕量測系統簡介,奈米通訊第9卷第3期,第4-10頁,中華民國91年8月出刊。
    38. Z. Gahr, K. Heinz, “Microstructure and wear of material”, Tribology series, 10, Elsevier, 1987.
    39. 楊春欽,磨潤學原理與應用,科技圖書股份有限公司,1983。
    40. 楊春欽,摩擦與磨耗,科技圖書股份有限公司,1984。
    41. 李明奇,製程參數對中碳鋼表面被覆 SiC 粉末耐磨耗性能之影響,,國立台灣科技大學碩士學論文,1998。
    42. Y.C. Lin, S.W. Wang, “Wear behavior of ceramic powder cladding on an S50C steel surface”, Tribology International 36, pp.1-9, 2003.
    43. X.H. Wang﹐S.L. Song﹐S.Y. Ou﹐D. Zou﹐”Characterization of in situ synthesized TiC particle reinforced Fe-based composite coating produced by multi-pass overlapping GTAW melting process”﹐Surface and Coatings Technology﹐v 201, n 12﹐pp.5899-5905, 2007.
    44. 伍泰源,不同冷卻方式之低碳鋼表面被覆陶瓷粉末及合金元素之耐磨耗行為研究,國立台灣科技大學博士學論文,2014。
    45. Q.B.Zhang , M.L.Sun , X.G.Wei , Y.M.Zhu , “Rare earth elements modification of laser-clad nickel-based alloy coatings” , Applied Surface Science, v 174, n 3-4, Apr 30, pp.191-200, 2001.
    46. Y. Yongqiang, Y. Baohe, Z. Zhihong, Q. Changqing, W. Xiaoguo, “Effect of rare-earth element in laser cladding high temperature alloy”, Proceedings of SPIE - The International Society for Optical Engineering, 3862, pp.438-442, 1999.
    47. Vinod K. Sarin, "COMPREHENSIVE HARD MATERIALS", Elsevier, UK, 2014.

    無法下載圖示 全文公開日期 2021/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE