簡易檢索 / 詳目顯示

研究生: 何政宇
Jheng-Yu He
論文名稱: 利用鋅蒸氣氧化法成長陣列氧化鋅奈米柱及其光電性質之研究
Syntheses and their photoluminescence of aligned ZnO nanorods grown by the oxidation of evaporating Zn vapor
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 黃鶯聲
Ying-Sheng Huang
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 鋅蒸氣氧化法氧化鋅奈米柱
外文關鍵詞: oxidation of evaporating Zn vapor, ZnO, nanorod
相關次數: 點閱:275下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以Zn+ZnO當作反應源,利用鋅蒸氣氧化法成長氧化鋅一維材料,並討論不同觸媒、不同觸媒製備方式、不同基板、複合觸媒以及基板粗糙度對氧化鋅一維材料成長之影響。
  在觸媒的選擇上,我們使用了Sn、In、Ni三種元素。實驗結果發現,在單一觸媒的部份,以化學溶液旋鍍法經氧化及還原反應後的Ni觸媒所成長出的一維結構形態最為優異,為六角柱狀結構,不過直徑仍太粗,約有2μm ~ 3μm,因此我們利用調整化學溶液中PVA量、複合觸媒的使用與基板蝕刻來改善此情形,發現當PVA的濃度調整到10%時,會有細直徑奈米柱的生成,但是直徑差異相當大,為200nm ~ 2μm;於複合觸媒的實驗中,我們發現了在Ni中添加Sn可以使氧化鋅奈米柱的直徑更加均勻,混合觸媒所成長出之氧化鋅奈米柱其直徑約為200nm,但有少許氧化鋅之披覆物,而雙層觸媒所成長出之氧化鋅奈米柱其直徑約為400nm,最後結合基板蝕刻,限制複合觸媒的移動,發現Sn(濺鍍)/Ni(旋鍍)複合觸媒搭配經氫氧化鈉蝕刻後的單晶藍寶石基板所成長出的陣列氧化鋅奈米柱形態最為優異,其直徑在100nm以下,且長度約為20μm ~ 40μm。
  由TEM觀察以及EDS元素分析中,顯示了在氧化鋅一維結構的頂端並無發現金屬觸媒顆粒,由此推斷成長機制為VS機制。在成長過程的部份,我們利用Sn(濺鍍)/In(旋鍍)複合觸媒與Sn(濺鍍)/Ni(旋鍍)複合觸媒來探討陣列及非陣列氧化鋅奈米柱的成長過程,發現有觸媒顆粒的Sn(濺鍍)/Ni(旋鍍)觸媒,在氧化鋅奈米柱的成長初期會形成一多角柱狀成核點,接著從頂端成長垂直的一維材料;而沒有觸媒顆粒的Sn(濺鍍)/In(旋鍍)觸媒在成長初期僅能形成非晶型波浪狀之ZnO層,接著從高低起伏弧面成長出一維材料,故於成長初期即非垂直成長。因此金屬觸媒的有無與特性影響了成核點的好壞,進而影響了氧化鋅奈米柱的陣列性。另外從XRD及TEM結構分析得知,本實驗所合成出的氧化鋅奈米柱為Wurtzite結構。
  在PL光譜的分析中,可以看出本實驗所合成出的細直徑奈米線幾乎沒有缺陷峰的存在,顯示其品質相當優異,隨著直徑地增加,缺陷峰則越來越明顯,原因是因為粗直徑的奈米柱之氧所需要佔據的位置較多,而本實驗氧分壓為固定所導致。在各種溫度的退火比較發現,在成長溫度以下的退火溫度可以有效降低缺陷峰,而退火溫度若高於成長溫度,則缺陷峰會因為空氣中的氧氣填補速率不及晶體中的氧脫離而重新顯現。


In this experiment, we prepared one-dimensional ZnO nanorods by the oxidation of evaporating Zn vapor with mixed powders of Zn and ZnO. The effects of catalysts, catalyst preparation methods, substrates, composite catalysts, and substrate roughness on the growth of one-dimensional ZnO rods were investigated.
  Three types of catalysts of Sn, In, and Ni and their related oxides in the forms of single or double layers were involved. The experimental results showed that the Ni catalyst prepared by spin-coating followed by the pyrolysis and reduction reactions can lead to mostly aligned ZnO rods with a hexagonal cross section of 2μm ~ 3μm in diameter. In order to form the ZnO rods in nano size, the amount of PVA binder, a second catalyst, and the etched sapphire substrate were executed to have a smaller diameter. With an amount of 10% PVA in spin coating solution, the ZnO diameter became smaller but non-uniformly distributed in the range of 200 ~ 2μm. A second catalyst of Sn mixed into Ni catalyst improved the uniformity of ZnO rods with a size of ~ 200nm, however some big ZnO crystals were observed. If the second catalyst was stacked on the Ni catalyst to form bilayer catalyst, uniform and well-aligned ZnO rods with a diameter of 400nm were obtained. Combining with an NaOH-etched substrate to limit the migration of composite catalyst, well-aligned ZnO nanorods with a long length of 20~40 μm and a diameter smaller than 100 nm were obtained on the Sn(sputter)/Ni(spin coating) bilayer catalysts.
  
  From the characterizations of TEM and EDS, the vapor-solid growth mechanism was proposed, by observing without catalysts on the tips of ZnO rods. To understand the growth procedures, two systems of the Sn(sputter)/In(spin coating) and Sn(sputter)/Ni(spin coating) bilayer catalysts were investigated. It was observed that the Sn(sputter)/Ni(spin coating) catalyst formed discrete hexagonal nanocolumns in the initial nucleation stage to assist forming the vertically aligned ZnO nanorods. On the other hand, Sn/In bilayer catalysts had ZnO covered at initial stage to form a continuous wave-like layer, which led to slightly slant rods.
  From the results of PL spectra, we found that the small-sized nanorods were free from defect emission, indicating a good quality in crystallinity. The defect emission became apparent for the rods with larger diameter due to the insufficient supply of the oxygen flow during processing. The PL behaviors for the post-annealed ZnO nanorods were studied. It was observed that the defect emission was improved after 700oC annealing in air, but it became severe after rods were annealed at higher temperature of 800oC in air.

摘要…………………………………………………………………………………...II Abstract………………………………………………………………………………IV 致謝…..………………………………………………………………………………VI 目錄………………………………………………………………………………...VIII 圖目錄……………………………………………………………………………......XI 表目錄……………………………………………………………………………XVIII 第一章  緒論…………………………………………...…….…………...…...….1 1-1一維材料之介紹與應用.….….….……………………………..………….1 1-2研就動機與目的……………………………………..…………………….2 第二章  材料特性與文獻回顧………………………………..…………………..4 2-1 前言…………………………………………………..…………………….4 2-2 氧化鋅的基本性質…………………………………..…………………….6 2-3 氧化鋅的發光機制……………………………….…………….………….7 2-4 氧化鋅一維奈米線製備方法…………………………………………….10 2-4-1 化學氣相沉積法原理…………………………………………….11 2-4-2 有機金屬化學氣相沉積法……………………………………….16 2-4-3 低壓化學氣相沉積法…………………………………………….19 2-4-4 碳熱法…………………………………………………………….22 2-4-5 基板特殊處理…………………………………………………….25 2-4-6 物理氣相沉積法………………………………………………….29 2-4-7 化學溶液法……………………………………………………….36 2-4-8 模板輔助法……………………………………………………….41 第三章  實驗方法與步驟……………………………………………………….43 3-1 實驗儀器設備說明………………………………………………………43 3-1-1 鍍金機……………………………………………………………43 3-1-2 旋轉塗佈機………………………………………………………43 3-1-3 DC濺鍍機………………………………………………………..43 3-1-4 RF濺鍍機………………………………………………………...44 3-1-5 水平管型加溫爐…………………………………………………44 3-2 實驗藥品說明……………………………………………………………45 3-3 實驗流程…………………………………………………………………46 3-3-1 基板製備…………………………………………………………48 3-3-2 基板清洗…………………………………………………………48 3-3-3 靶材製備…………………………………………………………48 3-3-4 化學溶液配製……………………………………………………49 3-3-5 觸媒沉積…………………………………………………………49 3-3-6 一維奈米材料成長………………………………………………50 3-3-7 製程參數及步驟…………………………………………………50 3-4 性質量測及分析儀器……………………………………………………51 3-4-1 表面分析…………………………………………………………51 3-4-2 結構分析…………………………………………………………52 3-4-3 光學分析…………………………………………………………53 第四章  結果與討論…………………………………………………………….54 4-1 表面形貌及顯微結構…………………………………………………….54 4-1-1 不同觸媒製備方式對氧化鋅奈米結構之影響…………………54 4-1-2 各種基板對氧化鋅奈米結構之影響……………………………58 4-1-3 PVA濃度對氧化鋅奈米結構之影響……………………………64 4-1-4觸媒經過特殊處理對氧化鋅奈米結構之影響………………….67 4-1-5 複合觸媒對氧化鋅奈米結構之影響…………………………….72 4-1-6 基板蝕刻對於沉積氧化鋅奈米結構之影響…………………….77 4-2 觸媒點分析及成長機制………………………………………………….81 4-2-1 各種觸媒及其對應所成長的氧化鋅奈米柱…………………….81 4-2-2 氧化鋅陣列奈米柱成長過程及機制…………………………….87 4-3 XRD分析氧化鋅奈米柱結構…………………………………………….94 4-3-1 不同基板所成長出的氧化鋅奈米柱XRD分析………………...94 4-3-2 不同觸媒所成長出的氧化鋅奈米柱XRD分析………………...96 4-3-3 不同PVA濃度所成長出的氧化鋅奈米柱XRD分析……….…98 4-4 TEM分析氧化鋅奈米柱結構……………………………………………100 4-4-1 TEM圖像與元素分析…………………………………………...100 4-4-2 氧化鋅奈米柱電子繞射圖及HR圖像…………………………103 4-5 氧化鋅奈米柱之PL量測分析………………………………………….105 4-5-1 不同直徑的氧化鋅奈米柱的PL性質…………………………105 4-5-2 不同的退火溫度對氧化鋅奈米柱PL性質之影響……………108 第五章  結論……………………………………………………………………112 參考文獻……………………………………………………………………………115

Iijima, Helical microbubules of graphitic carbon,Nature,354,56(1991).

M.H.Huang,S.Mao,H.Feick,H.Yan,Y.Wu,H.Kind,E.Weber,R.Russo,P.Yang,Science 292,1897(2001).

C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater 15, 838 (2003)

Tsung-Han Chen, Shih-Chin Chang, I-Nan Lin, Diamond & Related Materials 14, 774–777 (2005).

B. Liu, H. C. Zeng, J. Am. Chem. Soc 125, 4430 (2003).

A. B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2003).

M. Guo, P. Diao, S. Cai, J. Solid State Chem 178, 1864 (2005).

Z.Q. Zhang, C.B. Jiang, S.X. Li, S.X. Mao, Journal of Crystal Growth 277, 321–329(2005).

Y. B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett 81, 144 (2002).

H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang, Adv. Mater 15, 1907 (2003).

D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p105 (1992).

陳貴賢、吳季珍,物理雙月刊,廿三卷六期(2001)。

K. Hiruma et al., J. Appl. Phys., 77(2), 447 (1995).

G.S. Cheng et al., J. Mater. Res., 15, 347 (2000).

Y. Li et al., Appl. Phys. Lett., 76(15), 2011 (2000).

W. B. Choi et al., Appl. Phys. Lett. 75, 3129 (1999).

C. L. Cheung et al., Appl. Phys. Lett. 76, 3136 (2000).

J. Kong et al., Science, 287, 622 (2000).

J. Kong, et al., Adv. Mater. 13, 1384 (2001).

X. Duan et al., Nature, 409,66 (2001).

M. H. Huang et al., Science, 292, 1897 (2001).

Y. Cui et al., Science, 293, 1289 (2001).

張博傑,「複合觸媒對鋅蒸氣氧化法成長氧化鋅奈米線之影響」,碩士論文,國立台灣科技大學,台北(2009)。

川合 知二,圖解奈米科技,工業技術研究院,全華科技圖書公司(2000)

羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華圖書股份有限公司(2008)

Y. Chen, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire Growth and characterization”, J. Appl. Phys. 84, 3912(1998).

李昕宇,「圓柱形及六角形氧化鋅奈米線的製備與基本性質比較」,碩士論文,國立清華大學,新竹(2006)。

Numerical Data and Functional Relationships in Science and Technology, 22, Subvolume a. Intrinsic Properties of Group IV Elements and III-V, II-IV and I-VII Compound, Berlin: Springer- Verlag (1987).

A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen,
and S. Gwo, Appl. Phys. Lett. 88, 103107 _2006.

DR Vij, N. Singh, Luminescence and Related Preperties of II-VI Semiconductors, Nova Science Publishers, NY (1998).

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys 79(10),7983(1996).

Bixia Lin, Zhuxi Fu, and Yunbo Jia, Applied Physics Letters 79, 943(2001).

F. C. Tsao, J. Y. Chen, C. H. Kuo, G. C. Chi, C. J. Pan, P. J. Hang, C. J. Tun, B. J. Pong, T. H. Hsueh, C. Y. Chang, S. J. Pearton, and F. Ren, Appl. Phys. Lett., 92, 203110(2008).

L. Wang, X. Zhang, S. Zhao, G.. Zhou, Y. Zhou, J. Qi, Appl. Phys. Lett, 86,024108(2005).

K Black, A C Jones, I Alexandrou, P N Heys and P R Chalker, Nanotechnology, 21,045701(2010).

A. Reiser, V. Raeesi, G. M. Prinz, M. Schirra, M. Feneberg, U. Ro¨ der, R. Sauer, K. Thonke, Microelectronics Journal 40, 306–308 (2009).

Liang-Yih Chen, Shu-Han Wu and Yu-Tung Yin, J. Phys. Chem. C, 113, 21572 – 21576 (2009).

Dapeng Wei and Qing Chen*, Crystal Growth & Design, Vol.10,122–127,(2010).

Chunya Geng, Yang Jiang, Yuan Yao, Xiangmin Meng, Juan Antonio Zapien, Chun Sing Lee, Yeshayahu Lifshitz and Shuit Tong Lee, Adv.Funct.Mater.(2004).

Bin Xiang, Pengwei Wang, Xingzheng Zhang,Shadi. A. Dayeh, David P. R. Aplin,† Cesare Soci, Dapeng Yu, and Deli Wang,Nano Letters, 7[2] 323-328 (2007).

Hong Jin Fan, Bodo Fuhrmann, Roland Scholz, Frank Syrowatka, Armin Dadgar,Alois Krost and Margit Zacharias, Journal of Crystal Growth, 287, 34-38(2006).

Hana Yoon, Kwanyong Seo, Heesung Moon, Kumar S.K.Varadwaj, Juneho In and Bongsoo Kim, J. Phys. Chem.C, 112, 9181-9185(2008).

Dong Sik Kim, Ran Ji, Hong Jin Fan, Frank Bertram, Roland Scholz, Armin Dadgar, Kornelius Nielsch, Alois Krost, Jurgen Christen, Ulrich Gosele and Margit Zacharias, Small, No.1, 76-80(2007).

W.R. Grove, “On Some Phenomena of the Voltaic Discharge” , The Philosophical
Magazine, vol.16 (1840) pp.478-482.

Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting,Diamond and Related Materials 12, 1841–1844 (2003).

Amarilio-Burshtein, S.Tamir and Y.Lifshitz, Appl. Phys. Lett., 96, 103104(2010).

Sheng Xu, Yaguang Wei, Melanie Kirkham, Jin Liu, Wenjie Mai,Dragomir Davidovic, Robert L.Snyder and Zhong Lin Wang, Journal of the American Chemical Society 130,14958(2008).

Yaguang Wei,†,§ Wenzhuo Wu,†,§ Rui Guo,‡ Dajun Yuan,‡ Suman Das,*,‡ and
Zhong Lin Wang*,†, Nano Letts, 3414-3419(2010).

X.Ren, C.H.Jiang, D.D.Li and L.He, Materials Letters 62, 3114-3116(2008).

鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局(2008)。

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E.
Gnade, J. Appl. Phys. 1996, 79, 7983.

Aleksandra B. Djurišić* and Yu Hang Leung, small,944-961(2006).

QR CODE