簡易檢索 / 詳目顯示

研究生: 陳昱錩
Yu-Chang Chen
論文名稱: 雷射表面紋理之感應硬銲對WC-Co與SKD11接合件特性之測試開發
Development of Laser Surface Texturing on the Properties test of Induction Brazed WC-Co/SKD11 Joint
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 張復瑜
Fu-Yu Zhang
洪基彬
Ji-Bin Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 雷射表面紋理冷作工具鋼碳化鎢感應硬銲剪切測試
外文關鍵詞: Laser texturing, Cold Work Tool Steel, Tungsten Carbide, Induction Brazing, Shear Test
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討不同持溫時間在700℃於SKD11工具鋼感應硬銲被銲接碳化鎢(8Co)銲道層之顯微結構與剪切強度的影響,並找出影響剪切強度之主要關鍵,以利於SKD11工具鋼硬銲製程的依據,使用奈秒雷射加工具有高能量密度和極低熱影響區的表現,製作兩種不同類型紋理圖案(條紋狀、網格狀)於鋼材上,而後利用感應硬銲法於碳化鎢和Bag-8銀基填料(Ag:49%、Cu:16%、Zn:23%、Mn:7.5%、Ni:4.5%)及冷作模具鋼硬銲研究,實驗結果顯示,雷射表面紋理製程提高冷作模具鋼表面粗糙度值,當感應硬銲時不同持溫時間減少基材的硬度值,但改善金屬材料的銲接特性。微觀結構觀察,冷作模具鋼與銀基填料接合處中銲道合金層有微量介面反應層,當持溫時間過於短暫將造成縮孔及裂痕等明顯缺陷產生,最後在90秒持溫時間當中,條紋狀紋理圖案與原材提升25%抗剪強度。


This thesis studies on the effect of different holding time at 700℃ on microstructure morphology and shear strength of weld layer for SKD11 tool steel Brazed with Tungsten Carbide(8Co). In addition, the major factors that influence shear strength performance of weld layer were found out in this study, as a basis of brazing SKD11 tool steel. Using nanosecond pulse laser is characterized with high energy density and trivial heat-affected-zone processing two typical texturing pattern (Stripe and Grid) on Steel materials, After the Induction brazing of Cemented Tungsten Carbide (WC-Co) and SKD11 Cold Work Tool Steel using Bag-8 silver base filler alloy has been studied. Results of experiment showed laser surface texturing process increase SKD11 tool steel surface roughness, that induction brazing different holding time decrease hardness and increase metal material joint properties. By the microstructure observation, the weld alloy layer was formed at SKD11/ Ag49Cu14Zn25Mn7.5Ni4.5 a small quantity interface, the insufficient holding time will create shrink holes and hair cracks in the brazed zone of WC-8Co/ Ag49Cu14Zn25Mn7.5Ni4.5/SKD11 joints, On ninety second holding time stripe texturing pattern mode can improve the shear strength of SKD11/Tungsten Carbide joint by 25 percent.

第一章、緒論1 1-1 研究背景1 1-2 研究目的與方法4 1-3 論文架構5 第二章、文獻回顧6 2-1 冷作模具鋼6 2-2 碳化鎢(Tungsten Carbide)6 2-3 材料接合定義10 2-3-1 接合製程原理10 2-3-2 硬銲(Brazing)12 2-3-3 填料合金之特性15 2-3-4 碳化鎢與鋼材接合18 2-4 材料表面紋理技術22 2-5 表面能與接觸角24 2-5-1 潤濕性(Wettability)24 2-5-2 潤濕性指標(Wettability Index)25 2-5-3 毛細現象26 第三章、研究方法27 3-1 實驗原理27 3-1-1 基材選用27 3-2 實驗設備28 3-2-1 光纖雷射系統28 3-2-2 掃描振鏡雷射系統29 3-2-3 感應加熱器31 3-2-5 Z軸控制平台32 3-3 量測儀器33 3-3-1 光學顯微鏡 (OM)33 3-3-2 差式熱分析儀 (DTA)33 3-3-3 綠光表面干涉儀(CCI)34 3-3-4 掃描式電子顯微鏡(SEM)35 3-3-5 微小維克式量測儀器35 3-3-6 X-Ray 分析儀36 3-3-7 萬能試驗機37 第四章、實驗規劃38 4-1 接合母材(碳化鎢、冷作工具鋼)39 4-2 硬銲填料40 4-3 示差熱分析(Differential Thermal Analysis, DTA)41 4-4 硬銲接合41 4-4-1 硬銲接合前基材之處理41 4-4-2 硬銲試片製備42 4-4-3 雷射於鋼材表面之加工研究42 4-4-4 感應硬銲接合43 4-5 表面形貌分析45 4-6 光學顯微鏡觀察46 4-7 硬度測試47 4-8 掃描式電子顯微鏡(SEM)觀察48 4-9 X-ray繞射分析48 4-10 剪切強度試驗49 第五章、實驗結果分析50 5-1 銀基填料之差式熱分析(DTA)50 5-2 雷射於鋼材表面之加工之研究52 5-3 表面形貌分析55 5-4 硬銲持溫時間對WC/Ag-Cu/SKD11 接合件影響64 5-4-1 硬銲接合件顯微組織圖64 5-4-2 硬銲持溫時間對接合件微觀組織與硬度之影響67 5-4-3 硬銲持溫時間對接合銲道元素分佈之影響70 5-4-4 硬銲持溫時間對接合件剪切強度之影響77 第六章、結論78 6-1 結論78 參考文獻79

1.A. Levy, Thermal residual stresses in ceramic-to-metal brazed joints, J. Am. Ceram. Vol. 74, pp. 2141–2147, 1991.
2.R. DoNascimento, A. Martinelli, A. Buschinelli, Review article:recent advances in metal- ceramic brazing, Ceramica 49, pp. 178–198, 2003.
3.S. Hausner, I. Hoyer, B. Wielage, Induction Brazing of Alumina and Zirconia with Various Metals, Proceedings of the 5th International Brazing and Soldering Conference, ASM, 2012.
4.C. Bing, H. Jihua, C. Chuang, C. Shuhai, Z. Xingke, Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials, Composites Science and Technology, Vol. 97, pp. 19–26, 2014.
5.Y. Shen, Z. Li, C. Hao, J. Zhang, A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer, Journal of the European Ceramic Society, Vol. 32, pp. 1769–1774,2012.
6.J. T. Xiong, J. L. Li, F. S. Zhang, X. Lin, W. D. Huang, Direct joining of 2D carbon/ carbon composites to Ti–6Al–4V alloy with a rectangular wave interface, Materials Science and Engineering: A, Vol. 488, pp. 205–213, 2008.
7.杜伯賢, 飛秒雷射之無熱加工加工創新研究心臟血管支架、玻璃內部光柵與裂片,2009.
8.H. Y. Zheng, W. Zhou, H. X. Qian, T. T. Tan, G. C. Lim, Polarisation-independence of femtosecond laser machining of fused silica, Applied Surface Science, Vol. 236, pp. 114-119, 2004.
9.R. W. Stevenson, Metals Handbook, Ninth Edition, Volume 7, ASM, Ohio, pp. 773-783, 1985.
10.N. J. Culp, D. D. Huffman and R.J. Henry, Metals Handbooks, Desk Edition, ASM, Ohio, pp. 18.1-18.16, 1985.
11.盧鴻華、廖文祥, 碳化鎢陶瓷材料之微結構與機械性質之研究, 中華民國陶業研究學會年會論文, 2007.
12.林韋廷, 真空硬銲製程和不同塡料對WC-Co與CrMo合金鋼真空硬銲件特性之影響, 碩士論文, 大同大學, 2009.
13.W. B. Lee, B. D. Kwon, S. B. Jung, Effect of bonding time on joint properties of vacuum brazed WC-Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal, Materials Science and Technology, Vol.20 , pp. 1474-1478, 2004.
14.W. B. Lee, B. D. Kwon, S. B. Jung, Effect of Cr3C2 on the microstructure and mechanical properties of the brazed joints WC-Co and carbon steel, International Journal of Refractory Metal & Hard metals, Vol.24, pp. 215-221, 2006.
15.M. Uzkut, N. S. Koksal, B. S. Unlu, The determination of diffusion in connecting SAE 1040/WC material by brazing, Journal of Materials Processing Technology, Vol.169, pp. 409-413, 2005.
16.黃慎模, 碳化鎢植焊被覆延長刀具、工具、模具及零件之壽命至1000%, 機械材料, Vol.192, pp. 132-140, 2001.
17.桂業煒、胡國平, 碳化鎢硬面材料, 粉末冶金會刊, Vol.24, pp.257-262, 1999.
18.ASM Metals Reference Book, Second Edition, ASM, Ohio, pp.84-87, 1983.
19.Metal Powder Report, May, pp.13, 1994.
20.周長彬, 銲接學, 全華圖書股份有限公司, 2007.
21.薛人愷, 硬銲之基本原理及應用, 銲接與切割, 第 7 卷, 第 3 期, pp. 33-43, 1997.
22.G. Humpston , D. M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993.
23.D. L. Olson et. al., ASM Handbook Vol. 6 Welding, Brazing, and Soldering, ASM International, 1993.
24.蘇程裕、周長彬、吳柏成、劉茂賢, 真空硬銲的原理與應用, 工業材料, Vol. 120, p. 58, 1996.
25.張晏碩, 以銅錳基銲材真空硬銲鑽石之研究, 碩士論文, 國立台北科技大學, 2004.
26.Brazing Handbook 5th edition, American Welding Society, 2007.
27.M. Schwartz, Brazing: For the Engineering Technologist, ASM International, 1995.
28.T. B. Massalski, Binary alloy Phase Diagrams 5nd edition, ASM International, 2007.
29.M. Schwartz, Brazing: For the Engineering Technologist, ASM International, 1995.
30.A. Rabinkin and H. H. Liiebermann, in Rapidly Solidified Alloys, edited by H. H. Liiebermann, (Marcel Dekker, New York), pp.691, 1993.
31.洪胤庭, 鈮合金與鈦合金之真空硬銲接合及其接合介面之研究,博士論文, 台灣大學, 2005.
32.T. B. Massalski, Binary Alloy Phase Diagrams 2nd ed., ASM International, 1990.
33.P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, 1995.
34.N. Bredzs and H. Schwartzbart, Metallurgy of Bonding in Brazed Joints, Welding Research Supplement, pp.49s-58s, 1960.
35.Y. Li, Z. Zou, X. Holly, T. Feng, X. Wang, A study on microstructure in the brazing interface of WC-TiC-Co hard alloys, International Journal of Refractory Metal & Hard metals, Vol.20, pp. 169-173,2002.
36.Y. Li, Z. Zou, X. Holly, X. Wang, Microstructure and XRD analysis in the brazing zone of a new WC–TiC–Co hard alloy, Materials Research Bulletin, Vol. 37, pp. 941-948, 2002.
37.Y. Li, Z. Zou, T. Feng, X. Wang, Oxidation resistance and phase constituents in the brazing interface of WC-TiC-Co hard alloys, Journal of Materials Processing Technology, Vol.122, pp. 51-55,2002.
38.J. Nowacki, M. Kawiak, Tensions and deformations of WC-Co cermets and 17-4 PH steel vacuum brazed joints, Journal of Materials Processing Technology, pp294–299, 2003.
39.M. Uzkut, N. S. Koksal, B. S. Unlu, The determination of diffusion in connecting SAE 1040/WC material by brazing, Journal of Materials Processing Technology, Vol.169, pp. 409-413, 2005.
40.W. B. Lee, B. D. Kwon, S. B. Jung, Effect of bonding time on joint properties of vacuum brazed WC-Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal, Materials Science and Technology, Vol.20 , pp. 1474-1478, 2004.
41.W. B. Lee, B. D. Kwon, S. B. Jung, Effect of Cr3C2 on the microstructure and mechanical properties of the brazed joints WC-Co and carbon steel, International Journal of Refractory Metal & Hard metals, Vol.24, pp. 215-221, 2006.
42.P. He, J. C. Feng, W. Xu, Microstructure and kinetics of induction brazing TiAl-based intermetallics to steel 35CrMo using Ag-Cu-Ti filler metal, Materials Science and Engineering, A418, pp. 53–60, 2006.
43.C. Jiang, H. Chen, Q. Wang, Y. Li, Effect of brazing temperature and holding time on joint properties of induction brazed WC-Co/carbon steel using Ag-based alloy, Journal of Materials Processing Technology,Vol.229, pp. 562-569, 2015.
44.A. Lamraoui, S. Costil, C. Langlade, C. Coddet, Laser surface texturing (LST) treatment before thermal spraying: A new process to improve the substrate-coating adherence, Surface and Coatings Technology, Vol.205, pp S164–S167.
45.Y. Zhang, G. Zou, L. Liu, A. Wu, Z. Sun, Y. N. Zhou, Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure, Materials Science and Engineering: A, Vol.662, pp. 178-184, 2016.
46.J.T. Xiong, J.L. Li, F.S. Zhang, X. Lin, W.D. Huang, Direct joining of 2D c/carbon composites to Ti–6Al–4Valloy with a rectangular wave interface, Materials Science and Engineering A, Vol.488, pp. 205-213, 2008.
47.T. Ibatan, M.S. Uddin, M.A.K. Chowdhury, Recent development on surface texturing in enhancing tribological performance of bearing sliders, Surface & Coatings Technology, Vol.272, pp 102–120.
48.W. Feduska. High-Temperature Brazing Alloy-base Metal Wetting Reactions, Vol.38 (3), pp122s, 1959.

無法下載圖示 全文公開日期 2021/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE