簡易檢索 / 詳目顯示

研究生: ALPHONCE AYADO OWAYO
ALPHONCE AYADO OWAYO
論文名稱: Investigation of Micro Cracks Evolution in Artificial Rocks with Inclined Shear Tests and DEM Simulations
Investigation of Micro Cracks Evolution in Artificial Rocks with Inclined Shear Tests and DEM Simulations
指導教授: 鄧福宸
Fu-Chen Teng
陳韋志
Wei-Chih Chen
口試委員: 鄧福宸
Fu-Chen Teng
陳韋志
Wei-Chih Chen
Chen-Li Hsien
Chen-Li Hsien
楊國鑫
Kuo-Hsin Yang
Clarice Chiu
Clarice Chiu
Weng M.C
Weng M.C
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 205
中文關鍵詞: DEM
外文關鍵詞: DEM, Artificial rocks
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Micro-cracks are one of the degradation mechanisms in rocks and concrete structures. For serviceability design, it is important to understand the microcrack behavior in the host rock around tunnels during excavation. This study aimed to annex the specifics of the stress level (state) to the excavation damaged zone (EDZ) definition. Further, the influence of aggregate shape and water binder ratio on the crack behavior of cement-based materials was also investigated. To achieve the aim of this study, inclined shear tests (ISTs) were conducted on scaled non-hollow and hollow artificial rock samples. The samples were made of differently shaped aggregates (angular, A, and rounded, R) at varying water binder (w/b) ratios (w/b= 0.23 and w/b=0.35). Moreover, discrete element (DEM) simulations of the tests were carried out and their output was compared against the tests.

    There was good agreement between the test and DEM simulations, thereby validating the capability of the variable bond property model proposed in this study to be used for crack evaluation studies in brittle materials. New definitions of the EDZ incorporating the stress state have been proposed. The crack mechanism under varying shear angles, water binder ratio, and differently shaped aggregates is also presented. The results indicate that the water binder ratio only affects macro-parameters i.e., Young’s modulus (E) and Poisson’s ratio (v). The cracking in samples made of angular (A) aggregate seems concentrated but sparse. The ability of A-aggregates to interlock limits the spread and intensity of cracks in samples made of angular aggregates, whether in hollow or non-hollow samples. The rounded (R) aggregates on the other hand have no interlock capability, as a result, the cracking is more widespread and intense. The acoustic emission (AE) events seem to align themselves along the direction of the resultant force or parallel to the shear planes and around the hollow openings. The DEM’s broken bonds, on the other hand, seem to propagate in the direction parallel to the loading plates bearing the applied external major principal stresses. At a low load level (LL), only microcracks occur in the sample, when LL increases to generally between (47-60) %, localization occurs (i.e., micro-cracks populate the shear zone), and the microfracture slowly transforms to macro-fracture. Finally, the presence of the internal balancing support, pi, seems to lessen the extent and severity of the cracks around the opening for anisotropic loading cases, as observed from both tests and DEM results.

    Contents Abstract II Acknowledgment IV Dedications V List of Figures XII List of Tables XXII List of symbols XXIV CHAPTER ONE INTRODUCTION 1 1.1. Background information 1 1.2. Objectives 2 1.3. Structure 3 CHAPTER TWO LITERATURE REVIEW 4 2.1. Excavation Damage Zone (EDZ) 4 2.1.1. The Kirsch Solution 4 2.1.2. Estimations of EDZ from previous studies 5 2.2. Discrete element modeling (DEM) 7 2.2.1. DEM contact models 9 2.2.2. Hertz Mindlin model 9 2.2.3. Theoretical Basis of EDEM calculations. 11 2.2.4. Interaction laws of DEM 14 2.2.5. Review of literature related to DEM 21 2.3. Finite Discrete Element Modelling, FDEM. 24 2.3.1. Idealized principles that govern crack propagation in intrinsic FDEMs 26 2.3.2. A comparison between FEM, DEM & FDEM. 26 2.4. Inclined Shear Test (IST) 27 2.5. Acoustic Emission (AE) technology 28 2.6. Review of literature related to water binder ratio and aggregate shape 31 CHAPTER THREE METHODS AND MATERIALS 34 3.1. Materials 34 3.2. Sample preparation for hollow samples 37 3.2.1 Sample preparation procedure for hollow samples. 40 3.2.2 Sample preparation procedure for non-hollow samples 42 3.3. Tests on hollow artificial rock samples 43 3.3.1. Modified IST (MIST) loading design for hollow sections 45 3.3.2. MIST Loading procedure on the hollow samples 48 3.4. IST tests on non-hollow artificial rock samples 51 3.5. AE equipment 52 3.6. AE Calibration 54 3.7. Numerical analysis 55 CHAPTER FOUR MACRO AND MICRO-FRACTURE BEHAVIOR IN BENCHMARK TESTS 63 4.1. Introduction 63 4.2. EDEM simulation of inclined shear test. 63 4.3. Numerical model set up for hollow samples 64 4.4. Macro-input parameters 65 4.5. Micro-input parameters 67 4.5.1. Hypothesis for proposed bond property adjustment 67 4.5.2. Variation of the micro parameters of confinement-dependent bonded model 68 4.6. Model development in brief 72 4.7. Results and Discussions 73 4.7.1. Loading process under macro-view 73 4.7.2. The spatial distribution of the broken bonds of EDEM versus micro-seismic sources (AE) in the experiment. 74 4.8. Characteristics of macro-fracture propagation 76 4.9. Summary 82 CHAPTER FIVE FACTORS AFFECTING MACRO AND MICRO-BEHAVIOR IN CEMENT-BASED MATERIALS 84 5.1. Introduction 84 5.2. IST results: Macroscopic fracture behavior 84 5.2.1. Effect of shear angle and aggregate shape 84 5.2.2. Effect of the w/b ratio 85 5.2.3. Macrofracture patterns 86 5.3. AE results: microscopic fracture behavior 89 5.3.1. Microcrack evolution 89 5.3.2. Effects of shear angle, aggregate shape, and w/b ratio on microcrack behavior 91 5.4. DEM simulation 92 5.4.1. Numerical model setup 92 5.4.2. Macroparameters in the simulation 93 5.4.3. Calibration of the variable bond property model 95 5.5. DEM results and discussion 96 5.5.1. Stress‒strain response 96 5.5.2. Effect of w/b ratio on macroparameters 99 5.5.3. Effect of aggregate shape on microparameters 100 5.5.4. Microfracture crack propagation 101 5.6. Various types of materials studied in this chapter 102 5.7. EDEM sensitivity analysis 105 5.8. Summary 111 CHAPTER SIX CRACK BEHAVIOUR AROUND THE OPENING UNDER FIELD STRESSES 113 6.1. Introduction 113 6.2. The test plan and rationale 113 6.3. Modified IST (MIST) results: Macroscopic fracture behavior around the hollow opening 114 6.3.1. Effect of shear angle and aggregate shape on the sample with opening’s response to loading 117 6.3.2. Internal support pressure (pi) on the opening versus AE 123 6.3.3. Effect of water binder ratio on samples with the opening’s response to loading 126 6.3.4. Macrofracture pattern behavior around the opening 127 6.4. AE results: Microscopic fracture behavior around the hollow opening 129 6.4.1. Microcrack evolution around the opening on cracking around the opening 129 6.4.2. Possible explanation of the material behavior in the experiment 136 6.5. DEM Simulations of cracking around the hollow opening 142 6.5.1. Numerical model setup for hollow samples 142 6.5.2. The Excavation damaged zone (EDZ) fracture propagation shape. 143 6.6. The macro and micro-behavior in samples without internal support pressure, pi. 144 6.6.1. The stress-strain characteristics 144 6.6.2. Microfracture propagation around the opening, EDZ; EDEM & AE 145 6.7. The macro and micro-behavior in samples with internal support pressure, pi 152 6.7.1. The stress-strain characteristics 152 6.7.2. Microfracture propagation around the opening; EDEM & AE 155 6.8. Key findings related to the EDZ 163 6.9. Generalized crack propagation mechanism of AE events and broken bonds 164 6.10. Toughness index and stress intensity factor 167 6.11. Summary 169 CHAPTER SEVEN CONCLUSIONS AND RECOMMENDATIONS 172 7.1. Conclusions 172 7.2. Recommendations. 176 Bibliography 177 Appendices 193

    Addis, M. A., Barton, N. R., Bandis, S. C., & Henry, J. P. (1990). Laboratory Studies on the Stability of Vertical and Deviated Boreholes. December 2017. https://doi.org/10.2118/20406-ms
    Aïtcin, P. C. (2016). The importance of the water-cement and water-binder ratios. Science and Technology of Concrete Admixtures, 3–13. https://doi.org/10.1016/B978-0-08-100693-1.00001-1
    An, H., Liu, H., & Han, H. (2020). Hybrid Finite-Discrete Element Modelling of Excavation Damaged Zone Formation Process Induced by Blasts in a Deep Tunnel. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/7153958
    Andrade Neto, J. da S., De la Torre, A. G., & Kirchheim, A. P. (2021). Effects of sulfates on the hydration of Portland cement – A review. Construction and Building Materials, 279. https://doi.org/10.1016/j.conbuildmat.2021.122428
    ASTM-E976-11. (2007). Standard guide for determining the reproducibility of acoustic emission sensor response. In American Society of Testing Material. American Society for Testing and Materials.
    ASTM C494/C494M−17. (2017). Standard Specification for Chemical Admixtures for Concrete. ASTM International, February, 1–10. https://doi.org/10.1520/C0494
    Bahrani, N., Valley, B., Kaiser, P. K., & Pierce, M. (2011). Evaluation of PFC2D Grain-Based Model for simulation of confinement-dependent rock strength degradation and failure processes. 45th US Rock Mechanics / Geomechanics Symposium.
    Barton, N. (1994). Physical and discrete element models of excavation and failure in jointed rock. Publikasjon - Norges Geotekniske Institutt, 194(January). https://doi.org/10.1016/0148-9062(94)92563-1
    Barton, N. R. (2011). From Empiricism, Through Theory, to Problem Solving in Rock Engineering. In 12th ISRM Congress.
    Brady, B., & Brown, E. (2020). Rock Mechanics for Underground Mining. In Paper Knowledge . Toward a Media History of Documents. Springer.
    Brown, N. J. (2013). Discrete Element Modelling of Cementitious Materials The University of Edinburgh. In Civil engineering: Vol. Doctor of. University of Edinburgh.
    Burman, B. C., Cundall, P. A., & Strack, O. D. L. (1980). A discrete numerical model for granular assemblies. Geotechnique, 30(3), 331–336. https://doi.org/10.1680/geot.1980.30.3.331
    Cai, M., & Kaiser, P. K. (2014). In-situ rock spalling strength near excavation boundaries. Rock Mechanics and Rock Engineering, 47(2), 659–675. https://doi.org/10.1007/s00603-013-0437-0
    Calibration of internal Hertz-Mindlin with Bonding contact model. (n.d.). Retrieved November 13,2020,fromhttps://www.edemsimulation.com/content/uploads/2014/07/Calibration_of_Internal_Hertz_Mindlin_with_Bonding_Contact_Model.pdf
    Cb, C., Sciences, E., & Cb, C. (2004). Discrete-element modelling : methods and. 1797–1816.
    Chen, H., Xu, B., Wang, J., Nie, X., & Mo, Y. L. (2020). XFEM-based multiscale simulation on monotonic and hysteretic behavior of reinforced-concrete columns. Applied Sciences (Switzerland), 10(21), 1–21. https://doi.org/10.3390/app10217899
    Chen, L.-H. (2003). Failure of rock under normal wedge indentation. In ProQuest Dissertations andTheses.http://search.proquest.com/docview/288008903?accountid=14426%0Ahttp://www.yidu.edu.cn/educhina/educhina.do?artifact=&svalue=Failure+of+rock+under+normal+wedge+indentation&stype=2&s=on%0Ahttp://sfx.lib.tsinghua.edu.cn/tsinghua?url_ver=Z39.88-2004&rft_val_f
    Chen, L.-H. H., Chen, W.-C. C., & Chen, Y.-C. C. (2019). Shear fracture evolution in rocks examined using a novel shear device associated with acoustic emissions. Engineering Fracture Mechanics, 210(July 2018), 42–53. https://doi.org/10.1016/j.engfracmech.2018.07.003
    Chen, L. H., Lin, G. Z., Chen, Y. C., & Yang, W. X. (2013). Using acousto-optic coupling technology to investigate the fracture evolution of rock-like materials during inclined shear tests. Applied Mechanics and Materials, 284–287. https://doi.org/10.4028/www.scientific.net/AMM.284-287.1363
    Chen, W. C., Chen, L. H., & Chen, Y. C. (2018). Using a novel shear apparatus coupled with acoustic emission to investigate shear fracture evolution of cement-based materials in macro- and micro-views. Construction and Building Materials, 187, 665–673. https://doi.org/10.1016/j.conbuildmat.2018.07.144
    Chen, X., & Elliott, J. A. (2020). On the scaling law of JKR contact model for coarse-grained cohesive particles. Chemical Engineering Science, 227, 115906. https://doi.org/https://doi.org/10.1016/j.ces.2020.115906
    Chen, X., Wang, L. G., Morrissey, J. P., & Ooi, J. Y. (2022). DEM simulations of agglomerates impact breakage using Timoshenko beam bond model. Granular Matter, 24(3), 74. https://doi.org/10.1007/s10035-022-01231-9
    Chiu, C. C., & Weng, M. C. (2019). DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction. Computers and Geotechnics, 112(April), 51–59. https://doi.org/10.1016/j.compgeo.2019.04.001
    Chung, C., Kim, D., & Park, J. (2017). Diagonal crack propagation analysis of reinforced concrete beams using XFEM. The 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM2017), 2004, 7.
    CUNDALL, P. A., & HART, R. D. (1992). CUNDALL, P., A., & HART, R., D. 1992. Numerical modelling of discontinua. Engineering Computations, 9, 101-113. Engineering Computations, 9(2), 101–113. https://doi.org/10.1108/eb023851
    Czuryszkiewicz, A. (1973). The effect of aggregate shape upon the strength of structural lightweight-aggregate concrete. Magazine of Concrete Research, 25(83), 81–86. https://doi.org/10.1680/macr.1973.25.83.81
    Davison, B., & Owens, G. W. (2008). Steel Designers’ Manual: The Steel Construction Institute: Sixth Edition. In B. Davison & G. W. Owens (Eds.), Steel Designers’ Manual: The Steel Construction Institute: Sixth Edition (6th ed.). Blackwell Publishing. https://doi.org/10.1002/9780470775097
    DEM solutions Ltd. (2006). EDEM. https://www.altair.com/edem/
    Di Maio, F. P., & Di Renzo, A. (2005). Modelling particle contacts in distinct element simulations: Linear and non-linear approach. Chemical Engineering Research and Design, 83(11 A), 1287–1297. https://doi.org/10.1205/cherd.05089
    Dilrukshi, S., & Wijewickreme, D. (2020). Study of Trench Backfill Particle Size Effects on Lateral Soil Restraints on Buried Pipelines Using Discrete Element Modeling. Journal of Pipeline Systems Engineering and Practice, 11(1), 1–14. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000423
    Dong, Y., Wu, S., Xu, S. S., Zhang, Y., & Fang, S. (2010). Analysis of concrete fracture using a novel cohesive crack method. Applied Mathematical Modelling, 34(12), 4219–4231. https://doi.org/10.1016/j.apm.2010.04.019
    Eberhard, P., & Gaugele, T. (2013). Simulation of cutting processes using mesh-free Lagrangian particle methods. Computational Mechanics, 51(3), 261–278. https://doi.org/10.1007/s00466-012-0720-z
    Eberhardt, E. (2001). Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. International Journal of Rock Mechanics and Mining Sciences, 38(4), 499–518. https://doi.org/10.1016/S1365-1609(01)00017-X
    EDEM. (2014). EDEM 2.6 User Guide.
    Fakhimi, A., & Hemami, B. (2017). Rock Uniaxial Compression Test and Axial Splitting. Procedia Engineering, 191, 623–630. https://doi.org/10.1016/j.proeng.2017.05.226
    Fang, W., Wu, J., Yu, T., Nguyen, T. T., & Bui, T. Q. (2019). Simulation of cohesive crack growth by a variable-node XFEM. Frontiers of Structural and Civil Engineering, 14(1), 215–228. https://doi.org/10.1007/s11709-019-0595-6
    Forti, T., Batistela, G., Forti, N., & Vianna, N. (2020). 3D Mesoscale Finite Element Modelling of Concrete Under Uniaxial Loadings. Materials, 13(20), 1–14. https://doi.org/10.3390/ma13204585
    Gálvez, J. C., Červenka, J., Cendón, D. A., & Saouma, V. (2002). A discrete crack approach to normal/shear cracking of concrete. Cement and Concrete Research, 32(10), 1567–1585. https://doi.org/10.1016/S0008-8846(02)00825-6
    Gasser, T. C., & Holzapfel, G. A. (2005). Modeling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering, 194(25–26), 2859–2896. https://doi.org/10.1016/j.cma.2004.07.025
    Geomechanica. (n.d.). Irazu Geomechanica. Retrieved October 23, 2021, from https://www.geomechanica.com/software
    Ghahari, S. A., Assi, L. N., Alsalman, A., & Alyamaç, K. E. (2020). Fracture properties evaluation of cellulose nanocrystals cement paste. Materials, 13(11). https://doi.org/10.3390/ma13112507
    Goodman E., R. (1989). Goodman, 1989. Introduction to Rock Mechanics, 2nd edition copy.pdf (pp. 68–69). John wiley & Sons.
    Hammah, R. E., Yacoub, T., Corkum, B., & Curran, J. H. (2008). The Practical Modelling of Discontinuous Rock Masses with Finite Element Analysis. In The 42nd U.S. Rock Mechanics Symposium (USRMS).
    Hasan, A., Karrech, A., & Chareyre, B. (2017). Evaluating force distributions within virtual uncemented mine backfill using discrete element method. International Journal of Geomechanics, 17(7), 1–12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000850
    Hatheway, A. W. (2009). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974-2006. Environmental and Engineering Geoscience, 15(1), 47–48. https://doi.org/10.2113/gseegeosci.15.1.47
    Hu, H. T., Lin, F. M., & Jan, Y. Y. (2004). Nonlinear finite element analysis of reinforced concrete beams strengthened by fiber-reinforced plastics. Composite Structures, 63(3–4), 271–281. https://doi.org/10.1016/S0263-8223(03)00174-0
    ITASCA, C. G. (2008). PFC2D (particle flow code in 2 dimensions) theory and background (I. C. G. Inc (Ed.)). https://www.itascacg.com/software/pfc
    Jäger, J. (1993). Elastic contact of equal spheres under oblique forces. Archive of Applied Mechanics, 63(6), 402–412. https://doi.org/10.1007/BF00805740
    Jiang, M. J., Yan, H. B., Zhu, H. H., & Utili, S. (2011). Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Computers and Geotechnics. https://doi.org/10.1016/j.compgeo.2010.09.001
    Jiang, M., Zhang, F., & Thornton, C. (2015). A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.2371
    Jiang, S., & Shen, L. (2022). Aggregate shape effect on fracture and breakage of cementitious granular materials. International Journal of Mechanical Sciences, 220(October 2021), 107161. https://doi.org/10.1016/j.ijmecsci.2022.107161
    Jin, L., & Zeng, Y. W. (2018). Numerical simulation of large-scale triaxial tests on soil-rock mixture using DEM with three-dimensional flexible membrane boundary. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering. https://doi.org/10.11779/CJGE201812018
    Jing, L., & Hudson, J. A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4), 409–427. https://doi.org/10.1016/S1365-1609(02)00065-5
    Kaiser, J. (1953). Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch (PhD Thesis): Vol. PhD Thesis. Technische Hochschule, Munich.
    Kang, M., & Weibin, L. (2018). Effect of the aggregate size on strength properties of recycled aggregate concrete. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/2428576
    Labra, C., Rojek, J., & Oñate, E. (2017). Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter. Rock Mechanics and Rock Engineering, 50(3), 621–638. https://doi.org/10.1007/s00603-016-1133-7
    Labuz, J. F., Cattaneo, S., & Chen, L. H. (2001). Acoustic emission at failure in quasi-brittle materials. Construction and Building Materials, 15(5–6), 225–233. https://doi.org/10.1016/S0950-0618(00)00072-6
    Lajtai, E. Z. (1969). Mechanics of second order faults and tension gashes. Bulletin of the Geological Society of America, 80(11), 2253–2272. https://doi.org/10.1130/0016-7606(1969)80[2253:MOSOFA]2.0.CO;2
    Li, L., Huang, J. G., Li, W. K., & Jiang, M. J. (2020). DEM simulation of the complete triaxial test of sandstone. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/570/2/022027
    Li, S., Ho, I. H., Ma, L., Yao, Y., & Wang, C. (2019). Load reduction on high-filled cut-and-cover tunnel using discrete element method. Computers and Geotechnics, 114(July). https://doi.org/10.1016/j.compgeo.2019.103149
    Lisjak, A., Figi, D., & Grasselli, G. (2014). Fracture development around deep underground excavations: Insights from FDEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 493–505. https://doi.org/10.1016/j.jrmge.2014.09.003
    Lisjak, A., Tatone, B. S. A., Mahabadi, O. K., Grasselli, G., Marschall, P., Lanyon, G. W., Vaissière, R. de la, Shao, H., Leung, H., & Nussbaum, C. (2016). Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 49(5), 1849–1873. https://doi.org/10.1007/s00603-015-0847-2
    Liu, H. W., Chen, L. H., Chen, Y. C., & Chang, Y. C. (2014). Suggested continued heat-treatment method for investigating static and dynamic mechanical properties of cement-based materials. Construction and Building Materials, 69, 91–100. https://doi.org/10.1016/j.conbuildmat.2014.07.034
    Liu, Z., & Crewe, A. (2020). Effects of size and position of openings on in-plane capacity of unreinforced masonry walls. Bulletin of Earthquake Engineering, 18(10), 4783–4812. https://doi.org/10.1007/s10518-020-00894-0
    Lotidis, M. A., & Nomikos, P. P. (2021). Acoustic emission location analysis and microcracks’ nature determination of uniaxially compressed calcitic marble hollow plates. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(2), 1–22. https://doi.org/10.1007/s40948-021-00237-6
    Ma, Y., & Huang, H. (2021). Effect of shear bond failure on the strength ratio in DEM modeling of quasi-brittle materials. Acta Geotechnica, 0123456789(N m). https://doi.org/10.1007/s11440-021-01220-x
    Mackie, R. I. (2015). Finite element modelling of structural concrete, by M.D Kotsovos: Review. Computers and Structures, 160(June), 40–41. https://doi.org/10.1016/j.compstruc.2015.07.004
    Mahboubi Niazmandi, M., & Binesh, S. M. (2020). A DFN–DEM Approach to Study the Influence of Confinement on the REV Size of Fractured Rock Masses. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0123456789. https://doi.org/10.1007/s40996-020-00348-2
    Miller, T. H., Potisuk, T., Higgins, C. C., & Yim, S. C. (2011). Finite element analysis of reinforced concrete beams with corrosion subjected to shear. Advances in Civil Engineering, 2011. https://doi.org/10.1155/2011/706803
    Mizukoshi, T., & Mimaki, Y. (1985). Deformation behaviour of a large underground cavern. Rock Mechanics and Rock Engineering, 18(4), 227–251. https://doi.org/10.1007/BF01079685
    Moharrami, M., & Koutromanos, I. (2017). Finite element analysis of damage and failure of reinforced concrete members under earthquake loading. Earthquake Engineering and Structural Dynamics, 46(15), 2811–2829. https://doi.org/10.1002/eqe.2932
    Momozu, M., Oida, A., & Koolen, A. J. (2000). Analysis of soil cutting process bu the distinct element method. Proceeding of the International Agricultural Engineering Conference.
    Moradian, Z. A., Ballivy, G., Rivard, P., Gravel, C., & Rousseau, B. (2010). Evaluating damage during shear tests of rock joints using acoustic emissions. International Journal of Rock Mechanics and Mining Sciences, 47(4), 590–598. https://doi.org/10.1016/j.ijrmms.2010.01.004
    Munjiza, A. (2004). The Combined Finite-Discrete Element Method. In The Combined Finite-Discrete Element Method. https://doi.org/10.1002/0470020180.fmatter
    Nguyen, N. H. T., Bui, H. H., Kodikara, J., Arooran, S., Nguyen, G. D., & Jitsangiam, P. (2017). Discrete element modelling of fracture in quasi-brittle materials. Mechanics of Structures and Materials: Advancements and Challenges - Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials, ACMSM24 2016, December, 329–336. https://doi.org/10.1201/9781315226460-49
    Nguyen, O., Repetto, E. A., Ortiz, M., & Radovitzky, R. A. (2001). A cohesive model of fatigue crack growth. International Journal of Fracture, 110(4), 351–369. https://doi.org/10.1023/A:1010839522926
    Nguyen, T. T., Bui, H. H., Ngo, T. D., & Nguyen, G. D. (2017). Discrete Element Modelling of the Mechanical Behaviour of a Highly Porous Foamed Concrete. Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics, July, 1380–1387. https://doi.org/10.1061/9780784480779.171
    Nitka, M., & Tejchman, J. (2020). Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. Engineering Fracture Mechanics, 231(March), 107029. https://doi.org/10.1016/j.engfracmech.2020.107029
    Oida, A., Schwanghart, H., & Ohkubo, S. (1999). Effect of tyre lug cross section on tyre performance simulated by distinct element method. Proceeding 13th International Conference of ISTVS.
    Owayo, A. A., Teng, F. C., & Chen, W.-C. (2021). DEM simulation of crack evolution in cement-based materials under inclined shear test. Construction and Building Materials, 301, 124087. https://doi.org/10.1016/j.conbuildmat.2021.124087
    Pietruszczak, S., & Haghighat, E. (2015). Modeling of Fracture Propagation in Concrete Structures Using a Constitutive Relation with Embedded Discontinuity. Studia Geotechnica et Mechanica, 36(4), 27–33. https://doi.org/10.2478/sgem-2014-0033
    Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8 SPEC.ISS.), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
    Rabbat, B. G., & Russell, H. G. (1985). Friction Coefficient of Steel on Concrete or Grout. Journal of Structural Engineering. https://doi.org/10.1061/(asce)0733-9445(1985)111:3(505)
    Rakhimzhanova, A. K., Thornton, C., Minh, N. H., Fok, S. C., & Zhao, Y. (2019). Numerical simulations of triaxial compression tests of cemented sandstone. Computers and Geotechnics, 113(January), 103068. https://doi.org/10.1016/j.compgeo.2019.04.013
    Richesson, S., & Sahimi, M. (2019). Hertz-Mindlin Theory of Contacting Grains and the Effective-Medium Approximation for the Permeability of Deforming Porous Media. Geophysical Research Letters, 46(14), 8039–8045. https://doi.org/10.1029/2019GL083727
    Rockfield. (n.d.). Elfen. Retrieved October 23, 2021, from https://www.rockfieldglobal.com/software/elfen-advanced/
    Rombach, G. A., & Faron, A. (2019). Numerical analysis of shear crack propagation in a concrete beam without transverse reinforcement. Procedia Structural Integrity, 17, 766–773. https://doi.org/10.1016/j.prostr.2019.08.102
    Rui, R., van Tol, F., Xia, X. L., van Eekelen, S., Hu, G., & Xia, Y. you. (2016). Evolution of soil arching; 2D DEM simulations. Computers and Geotechnics, 73, 199–209. https://doi.org/10.1016/j.compgeo.2015.12.006
    Shenxiang, X. (2011). Failure Evolution of Rocks under Inclined Shear Test Associated with Nondestructive Technique of Acoustic Emission (MSc. Thesis). National Taiwan University of Science and Technology.
    Sinaie, S. (2017). Application of the discrete element method for the simulation of size effects in concrete samples. International Journal of Solids and Structures, 108, 244–253. https://doi.org/10.1016/j.ijsolstr.2016.12.022
    Sladen, J. A., & Oswell, J. M. (1988). The induced trench method - a critical review and case history. Canadian Geotechnical Journal, 25(3), 541–549. https://doi.org/10.1139/t88-059
    Sun, Q. C., Guo, H. Sen, Xu, Z. H., Liu, Y., & Xu, X. (2021). The Method of Determining Excavation Damaged Zone by Acoustic Test and the Application in Engineering Cases. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/5533828
    Tan, X., Li, W., Zhao, M., & Tam, V. W. Y. (2019). Numerical discrete-element method investigation on failure process of recycled aggregate concrete. Journal of Materials in Civil Engineering, 31(1), 1–14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002562
    Tanaka, H., Momozu, M., Oida, A., & Yamazaki, M. (2000). Simulation of soil deformation and resistance at bar penetration by the distinct element method. Journal of Terramechanics, 37, 41–56.
    Tao, M., Hong, Z., Peng, K., Sun, P., Cao, M., & Du, K. (2019). Evaluation of excavation-damaged zone around underground tunnels by theoretical calculation and field test methods. Energies, 12(9). https://doi.org/10.3390/en12091682
    University of Edinburgh. (2022). Discrete Element Method Analysis Of Lateral Earth Pressure. http://demlateralearthpressure.weebly.com/contact-models.html
    Wang, Y., & Tonon, F. (2009). Modeling triaxial test on intact rock using discrete element method with membrane boundary. Journal of Engineering Mechanics, 135(9), 1029–1037. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000017
    Yang, Y., Gao, X., Deng, H., Yu, P., & Yao, Y. (2010). Effects of water/binder ratio on the properties of engineered cementitious composites. Journal Wuhan University of Technology, Materials Science Edition, 25(2), 298–302. https://doi.org/10.1007/s11595-010-2298-7
    Zhai, C., Wang, X., Kong, J., Li, S., & Xie, L. (2017). A sophisticated simulation for the fracture behavior of concrete material using XFEM. Earthquake Engineering and Engineering Vibration, 16(4), 859–881. https://doi.org/10.1007/s11803-017-0393-x
    Zhang, L., Wang, D., & Dong, J. (2020). Assessment of the Excavation Damaged Zones in the Surrounding Rock of an Underground Powerhouse under High in Situ Stress Using an Acoustic Velocity Detecting Method. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/7297260
    Zhu, Z., Tan, G., Zhang, W., & Wu, C. (2020). Preliminary analysis of the ductility and crack-control ability of engineered cementitious composite with superfine sand and polypropylene fiber (SSPP-ECC). Materials, 13(11), 1–15. https://doi.org/10.3390/ma13112609
    Zhuo-Hui, Z., Jian-Hua, Y., Chao-Jun, O., Dao-Yuan, T., & Jie-Qiong, Q. (2020). Modeling a Flexible Ring Net with the Discrete Element Method. Journal of Engineering Mechanics, 146(2), 4019120. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001707

    無法下載圖示 全文公開日期 2023/10/03 (校內網路)
    全文公開日期 2027/10/03 (校外網路)
    全文公開日期 2027/10/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE