簡易檢索 / 詳目顯示

研究生: Kavya
Dwivedi Kavya
論文名稱: 積層製造整流器和新型陽極材料的開發和優化應用於微生物燃料電池之規模擴大與抗生素去除
DEVELOPMENT AND OPTIMIZATION OF ADDI-TIVELY MANUFACTURED FLOW STRAIGHTEN-ERS AND NOVEL ANODE MATERIALS TOWARDS SCALE UP AND ANTIBIOTIC REMOVAL APPLICA-TIONS OF MICROBIAL FUEL CELLS
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王丞浩
Chen-Hao Wang
丘群
Chun Chiu
顏維謀
Wei-Mon Yan
林景崎
Lin, Jing-Chie
王金燦
Chin Tsan Wang
李 天錫
Benjamin Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 230
中文關鍵詞: 微生物燃料電池廢水處理抗生素去除陽極改性整流器綠色能源
外文關鍵詞: Microbial fuel cell, wastewater treatment, antibiotic removal, anode modification, flow straighteners, green energy
相關次數: 點閱:389下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微生物燃料電池(MFCs)是一種新興的可持續生物電化學技術,現在正在作為解決各種新興環境挑戰的方案,例如污水處理、制藥殘留物清除、遠程感測器的動力設備等。 本研究論文旨是在調查微生物燃料電池(MFCs)用於除去合成抗生素藥物Ciprofloxacin(CIP)和Norfloxacin(NFX)以及同時產生電力的性能。 研究包括三種不同的實驗。
在第一個實驗中,評估了兩個不同類型陽極的雙腔MFCs,用於除去CIP和化學需氧量(COD)以及產生電力。 結果表明,在相同條件下,多層碳纳米管涂層石墨氈(MWCNT-GF)陽極的功率密度(1512.9 mWm-2)和COD去除率(95.4%)比控制石墨氈陽極(816.3 mWm-2,COD去除率93.2%)更高。此外,MFC還測試了四種不同濃度的CIP,平均CIP去除率分別為MWCNT-GF阳极的58.575%和石墨氈陽極的54.25%。 MWCNT-GF陽極更高的表現歸功於它的宏孔結構,可增强電極表面的微生物相互作用。
在第二項實驗中,測試兩種以NiO/MnO2涂層的石墨絨和活性碳布作為基底陽極的雙腔微生物燃料電池(MFCs)的電力效能,以去除廢水中的NFX。 NiO/MnO2涂層是通過兩步水熱法完成的,並透過XRD和XPS分析修正過的電極表面進行了表徵。結果顯示,微生物與修飾過的電極間的細胞外電子轉移明顯改善,因內阻減小和表面更生物相容性。 NiO/MnO2涂層的石墨絨表現比控制簡單石墨絨好1.2倍,而修飾後的活性碳布的表現比控制簡單活性碳布好1.3倍。
在第三個實驗中,製造了兩種新型格架結構作為MFCs中的流量整流器。 研究了三種不同的流量(20 mL/min,60 mL/min和100 mL/min)對MFC功率性能的影響。 結果顯示,最佳流量60 mL/min在一小時的運行中可以產生最大功率密度(2871.89 mWm-2)、開路電壓(0.8 V)和COD降解率(96.34%)。 該研究還利用ANSYS模擬分析了流量的影響,發現過程結構對功率性能有明顯影響,與傳統蜂窩結構(53.28%)和X格架結構(69.31%)相比,提高了混合效率至82.78%。
最後,這項研究證明了MFC在去除合成抗生素藥物和生產電力方面具有潛力。研究結果顯示,使用MWCNT-GF陽極和以NiO/MnO2涂層石墨織物和活性碳布為基底陽極,分別改善了CIP的電力性能和NFX的去除效果。此外,研究還發現,gyroid結構是一種有效的流量直線化劑,可以提高MFC的電力性能。 關鍵字:微生物燃料電池、廢水處理、抗生素去除、陽極修飾、流量直線化劑、綠色能源。


Microbial fuel cells (MFCs) are emerging sustainable bio-electrochemical technology that are now being researched extensively as a solution for various emerging environmental challenges such as wastewater treatment, pharmaceutical residue removal, remote power devices for sensors etc. This research thesis aimed to investigate the performance of microbial fuel cells (MFCs) for removal of synthetic antibiotic drugs Ciprofloxacin (CIP) and Norfloxacin (NFX) and simultaneous power production. The study consisted of three different experiments.
In the first experiment, the performance of dual-chambered MFCs was evaluated with two different types of anodes for removal of CIP and Chemical Oxygen Demand (COD) and power production. The results showed that the multiwall carbon nanotubes coated graphite felt (MWCNT-GF) anode had higher power density (1512.9 mWm-2) and COD removal (95.4%) compared to the control graphite felt anode (816.3 mWm-2, COD removal 93.2%) under the same conditions. Additionally, the MFC was tested for four different concentrations of CIP, with an average CIP removal rate of 58.575% for the MWCNT-GF anode and 54.25% for the graphite felt anode. The higher performance of the MWCNT-GF anode was attributed to its macro-porous structure, which enhances microbial interaction on the electrode surface.
In the second experiment, the power performance of dual-chamber MFCs with NiO/MnO2 coated graphite felt and activated carbon cloth as base anodes was tested for NFX removal in wastewater. The NiO/MnO2 coating was done using a 2-step hydro solvothermal method, and the modified anode surface was characterized by XRD and XPS analyses. The re-sults showed that extracellular electron transfer between microorganisms and the modified an-ode improved significantly due to a reduced internal resistance and a more biocompatible sur-face. The NiO/MnO2 coated graphite felt performed 1.2 times better than the control plain graphite felt, while the modified activated carbon cloth performed 1.3 times better than the control plain activated carbon cloth.
In the third experiment, two novel lattice structures were additively manufactured to serve as flow straighteners in MFCs. The effects of three different flow rates (20 mL/min, 60 mL/min, and 100 mL/min) on the MFC power performance were investigated. The results showed that an optimal flow rate of 60 mL/min produced the maximum power density (2871.89 mWm-2), open circuit voltage (0.8 V), and COD degradation rate (96.34%) within one hour of operation. The study also analyzed the effect of flow rate using ANSYS simulation and found that the gyroid structure had a prominent effect on the power performance, enhancing the mix-ing efficiency to 82.78% compared to the traditional honeycomb structure (53.28%) and the X lattice structure (69.31%).

Table of Contents 摘要 i ABSTRACT iii ACKNOWLEDGMENT v List of Table 4 List of Figures 5 Chapter 1 : INTRODUCTION 1 1.1. Energy Shift Towards A Renewable Future 2 1.2. Microbial Fuel Cell Technology 7 1.2.1. Microbial Fuel Cell For Antibiotic Removal 9 1.2.2. Effect Of Flow Channels in Microbial Fuel Cell 11 1.3. Research Objectives 12 1.4. Thesis Summary 14 Chapter 2 : LITERATURE REVIEW 18 2.1. Overview of Microbial Fuel Cell System 19 2.1.1. Microbial Fuel Cell Technology 26 2.1.2. Different Types of MFC Designs 37 2.2. Different Operating Condition of MFC 40 2.2.1. Reactor Design 40 2.2.2. Electrode Spacing 40 2.2.3. Effect of pH 41 2.2.4. Effect of the Magnetic Field 42 2.2.5. Effect of External Resistance 42 2.2.6. Effect of Cathode Catalysts 43 2.3. Materials 44 2.3.1. Electrode Materials 44 2.3.2. Membrane Material 50 2.4. Applications of Microbial Fuel Cell Technology 51 2.4.1. MFC for Wastewater Treatment 52 2.4.2. Generation of Bio-Electricity 53 2.4.3. MFC as Underwater Monitoring Devices: 54 2.4.4. MFC as Biosensor 55 2.4.5. MFC as Sea Water Desalination: 56 2.4.6. MFC for Heavy Metal Recovery 57 2.4.6. MFC for Antibiotic Removal 58 2.5. Research Questions 63 Chapter 3: MATERIALS AND METHODS 70 3.1. Reactor Construction 71 3.2. Inoculation and Operation Conditions 73 3.3. Synthesis of Anodes 74 3.3.1. Preparation of MWCNT Coated Graphite Felt 74 3.3.2. Preparation of NiO/MnO2 Coated Graphite Felt 75 3.4. Design of Lattice Structures 78 3.5. Microbial Fuel Cell Setup 81 3.6. Methodology/ Experimentation 83 3.6.1. Electrochemical Measurements 83 3.6.2. Analytical Methods 83 3.6.3. Anode Characterization 84 3.6.4. Method for Detecting COD Removal and Antibiotic Removal 86 3.7. Materials for the Lattice Structures 86 3.7.1. Additive Manufacturing Technology- Multi Jet Fusion (MJF) 87 3.8. Flow Visualization 90 3.8.1. Experimental Flow Visualization 90 3.8.2. Simulation Flow Visualization 91 3.9. Lists of Chemicals and Instrument 96 Chapter 4: PERFORMANCE EVALUATION, POWER PRODUCTION, COD REMOVAL AND CIP REMOVAL OF MWCNT COATED GF ELECTRODE FOR DUAL CHAMBER MFC 99 4.1. MWCNT characterization 100 4.2. MFC-EA Power Performance 102 4.3. Summary of this chapter 110 Chapter 5 : PERFORMANCE EVALUATION OF NIOMNO2 COATED GF/ACF ON DUAL CHAMBER MFC ON POWER PRODUCTION, COD REMOVAL AND NFX REMOVAL 112 5.1. Electrode characterization 113 5.2. Performance analysis of MFC-EB 115 5.2.1. Power generation 115 5.2.2. COD and NFX removal 119 5.3. Summary of this chapter 122 Chapter 6 : FLUID FLOW ANALYSIS AND PERFORMANCE EVALUATION OF THREE DIFFERENT FLOW STRAIGHTENER ON RECIRCULATION MODE DUAL CHAMBER MFC ON POWER PRODUCTION AND COD REMOVAL 123 6.1. Power Generation 124 6.1.1. Acclimation Data 124 6.1.2. Open Circuit Voltage 127 6.1.3. Power Generation 129 6.2. COD Removal 133 6.3. ANSYS Flow Visualization 137 6.3.1. Geometry Definition and Mesh Generation 137 6.3.2. Mesh Independence Test 140 6.3.3. Flow Visualization 142 6.4. Experimental Flow Visualization 151 6.4.1. Mixing Efficiency 152 6.5. Summary of this chapter 153 Chapter 7 : CONCLUSION 155 7.1. Multiwall Carbon Nanotubes Coated Graphite Felt Anode for Efficient Removal of Ciprofloxacin from Domestic Wastewater in Dual Chambered Microbial Fuel Cells 156 7.2. Binder-Free NiO/MnO2 Coated Carbon Based Anodes for Simultaneous norfloxacin removal, Wastewater Treatment and Power Generation in Dual-Chamber Microbial Fuel Cell 157 7.3. Performance Analysis of Microbial Fuel Cells Integrated with Additively Manufactured Lattice-based Novel Flow-straightener. 158 7.4. Contribution of this Research Thesis and Future work 160 References 161 List of journal publications 206 List of conference articles 207

[1] S.H. Vetter, T.B. Sapkota, J. Hillier, C.M. Stirling, J.I. Macdiarmid, L. Aleksandrowicz, R. Green, E.J.M. Joy, A.D. Dangour, P. Smith, Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation, Agric. Ecosyst. Environ. 237 (2017) 234–241. https://doi.org/https://doi.org/10.1016/j.agee.2016.12.024.
[2] F. Yang, K.C. Wang, Y. Huang, Energy-neutral communication protocol for very low power microbial fuel cell based wireless sensor network, IEEE Sens. J. 15 (2015) 2306–2315. https://doi.org/10.1109/JSEN.2014.2377031.
[3] World Energy Outlook 2020, IEA (2020), World Energy Outlook 2020, IEA, Paris Https//Www.Iea.Org/Reports/World-Energy-Outlook-2020. (n.d.). https://www.iea.org/reports/world-energy-outlook-2020.
[4] S.K. and L.M. John Carey, Global Renewables Outlook: Energy transformation 2050, 2020. https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.
[5] Renewables are stronger than ever as they power through the pandemic, (2021). https://www.iea.org/news/renewables-are-stronger-than-ever-as-they-power-through-the-pandemic.
[6] 2022 renewable energy industry outlook, (2022). https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/renewable-energy-outlook.html.
[7] S.R. Bull, Renewable Energy Today and Tomorrow, in: Proc. IEEE, 89, 1216-1226, 2001. https://doi.org/10.1109/5.940290.
[8] R.L. J. Canfield, B. H. Goldner, Research on applied bioelectrochemistry First quarterly progress report, (1963).
[9] Z. Liao, J. Sun, D. Sun, R. Si, Y. Yong, Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells, Bioresour. Technol. 192 (2015) 831–834. https://doi.org/10.1016/j.biortech.2015.05.105.
[10] B.E. Logan, Microbial Fuel Cells, John Wiley & Sons, Old Main, Pennsylvania, USA, 2008.
[11] K.A. Dwivedi, S.-J. Huang, C.-T. Wang, S. Kumar, Fundamental understanding of microbial fuel cell technology: Recent development and challenges, Chemosphere. 288 (2022) 132446. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132446.
[12] Q. Xu, L. Wang, C. Li, X. Wang, C. Li, Y. Geng, Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@SiO2 in microbial fuel cell applications, Int. J. Hydrogen Energy. 44 (2019) 15322–15332. https://doi.org/10.1016/j.ijhydene.2019.03.238.
[13] L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, Z. Wang, Advances in microbial fuel cells for wastewater treatment, Renew. Sustain. Energy Rev. 71 (2017) 388–403. https://doi.org/10.1016/j.rser.2016.12.069.
[14] D. Pant, G. Van Bogaert, L. Diels, A Comparative Assessment of Bioelectrochemical Systems and Enzymatic Fuel Cells, (2012).
[15] M.C. Potter, P.R.S.L. B, Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. London. Ser. B, Contain. Pap. a Biol. Character. 84 (1911) 260–276. https://doi.org/10.1098/rspb.1911.0073.
[16] Q. Ping, B. Cohen, C. Dosoretz, Z. He, Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells, Desalination. 325 (2013) 48–55. https://doi.org/10.1016/j.desal.2013.06.025.
[17] U. Schrödera, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys. (2007). https://doi.org/https://doi.org/10.1039/B703627M.
[18] G.S. Jadhav, M.M. Ghangrekar, Bioresource Technology Performance of microbial fuel cell subjected to variation in pH , temperature , external load and substrate concentration, Bioresour. Technol. 100 (2009) 717–723. https://doi.org/10.1016/j.biortech.2008.07.041.
[19] H.Q. Anh, T.P.Q. Le, N. Da Le, X.X. Lu, T.T. Duong, J. Garnier, E. Rochelle-Newall, S. Zhang, N.-H. Oh, C. Oeurng, C. Ekkawatpanit, T.D. Nguyen, Q.T. Nguyen, T.D. Nguyen, T.N. Nguyen, T.L. Tran, T. Kunisue, R. Tanoue, S. Takahashi, T.B. Minh, H.T. Le, T.N.M. Pham, T.A.H. Nguyen, Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives, Sci. Total Environ. 764 (2021) 142865. https://doi.org/10.1016/j.scitotenv.2020.142865.
[20] I. Gajda, J. Greenman, I.A. Ieropoulos, Recent advancements in real-world microbial fuel cell applications, Curr. Opin. Electrochem. 11 (n.d.) 78–83. https://doi.org/10.1016/j.coelec.2018.09.006.
[21] P. Pandey, V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil, D. Pant, Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Appl. Energy. 168 (2016) 706–723. https://doi.org/10.1016/j.apenergy.2016.01.056.
[22] K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Tubular Microbial Fuel Cells for Efficient Electricity Generation, 39 (2005) 8077–8082.
[23] K.A. Dwivedi, S.-J. Huang, C.-T. Wang, Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review, Chemosphere. 287 (2022) 132248. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132248.
[24] J. Wang, S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review, J. Environ. Manage. 182 (2016) 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049.
[25] F. Desbiolles, L. Malleret, C. Tiliacos, P. Wong-Wah-Chung, I. Laffont-Schwob, Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment?, Sci. Total Environ. 639 (2018) 1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351.
[26] W.C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut. 187 (2014) 193–201. https://doi.org/10.1016/j.envpol.2014.01.015.
[27] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review, Sustain. Cities Soc. 27 (2016) 407–418. https://doi.org/10.1016/j.scs.2016.08.004.
[28] T.U. Berendonk, C.M. Manaia, C. Merlin, D. Fatta-Kassinos, E. Cytryn, F. Walsh, H. Bürgmann, H. Sørum, M. Norström, M.-N. Pons, N. Kreuzinger, P. Huovinen, S. Stefani, T. Schwartz, V. Kisand, F. Baquero, J.L. Martinez, Tackling antibiotic resistance: the environmental framework, Nat. Rev. Microbiol. 13 (2015) 310–317. https://doi.org/10.1038/nrmicro3439.
[29] N. Vieno, M. Sillanpää, Fate of diclofenac in municipal wastewater treatment plant — A review, Environ. Int. 69 (2014) 28–39. https://doi.org/10.1016/j.envint.2014.03.021.
[30] T. Rashid, F. Sher, A. Hazafa, R.Q. Hashmi, A. Zafar, T. Rasheed, S. Hussain, Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment, J. Environ. Chem. Eng. 9 (2021) 104502. https://doi.org/10.1016/j.jece.2020.104502.
[31] X. Xu, Y. Cheng, T. Zhang, F. Ji, X. Xu, Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation, Chemosphere. 152 (2016) 23–30. https://doi.org/10.1016/j.chemosphere.2016.02.100.
[32] R. Changotra, H. Rajput, J.P. Guin, S.A. Khader, A. Dhir, Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater, J. Clean. Prod. 242 (2020) 118544. https://doi.org/10.1016/j.jclepro.2019.118544.
[33] M. Ek, C. Baresel, J. Magnér, R. Bergström, M. Harding, Activated carbon for the removal of pharmaceutical residues from treated wastewater, Water Sci. Technol. 69 (2014) 2372–2380. https://doi.org/10.2166/wst.2014.172.
[34] M. Li, M. Zhou, X. Tian, C. Tan, C.T. Mcdaniel, D.J. Hassett, T. Gu, Microbial fuel cell ( MFC ) power performance improvement through enhanced microbial electrogenicity, Biotechnol. Adv. 36 (2018) 1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010.
[35] E. Issaka, J.N.-O. AMU-Darko, S. Yakubu, F.O. Fapohunda, N. Ali, M. Bilal, Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review, Chemosphere. 289 (2022) 133208. https://doi.org/10.1016/j.chemosphere.2021.133208.
[36] J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants, Environ. Pollut. 157 (2009) 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051.
[37] P. Lorenzo, A. Adriana, S. Jessica, B. Carles, F. Marinella, L. Marta, B.J. Luis, S. Pierre, Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem, Chemosphere. 206 (2018) 70–82. https://doi.org/10.1016/j.chemosphere.2018.04.163.
[38] S.A. Waksman, What is an Antibiotic or an Antibiotic Substance?, Mycologia. 39 (1947) 565–569. https://doi.org/10.1080/00275514.1947.12017635.
[39] L. Feng, M.E. Casas, L.D.M. Ottosen, H.B. Møller, K. Bester, Removal of antibiotics during the anaerobic digestion of pig manure, Sci. Total Environ. 603–604 (2017) 219–225. https://doi.org/10.1016/j.scitotenv.2017.05.280.
[40] M. Hasany, M.M. Mardanpour, S. Yaghmaei, Biocatalysts in microbial electrolysis cells: A review, Int. J. Hydrogen Energy. 41 (2016) 1477–1493. https://doi.org/10.1016/j.ijhydene.2015.10.097.
[41] F. Harnisch, C. Gimkiewicz, B. Bogunovic, R. Kreuzig, U. Schröder, On the removal of sulfonamides using microbial bioelectrochemical systems, Electrochem. Commun. 26 (2013) 77–80. https://doi.org/10.1016/j.elecom.2012.10.015.
[42] S. Zhang, H.-L. Song, X.-L. Yang, K.-Y. Yang, X.-Y. Wang, Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors, Chemosphere. 164 (2016) 113–119. https://doi.org/10.1016/j.chemosphere.2016.08.076.
[43] H.-L. Song, S. Zhang, X.-L. Yang, T.-Q. Chen, Y.-Y. Zhang, Coupled Effects of Electrical Stimulation and Antibiotics on Microbial Community in Three-Dimensional Biofilm-Electrode Reactors, Water, Air, Soil Pollut. 228 (2017) 83. https://doi.org/10.1007/s11270-017-3267-y.
[44] T.H. Lan, C.T. Wang, Y.C. Yang, C. Wen-Tong, Multi-effects of gravity and geometric flow channel on the performance of continuous microbial fuel cells, Int. J. Green Energy. 13 (2016) 1483–1489. https://doi.org/10.1080/15435075.2016.1206012.
[45] C.T. Wang, T. Sangeetha, W.M. Yan, W.T. Chong, L.H. Saw, F. Zhao, C.T. Chang, C.H. Wang, Application of interface material and effects of oxygen gradient on the performance of single-chamber sediment microbial fuel cells (SSMFCs), J. Environ. Sci. (China). 75 (2019) 163–168. https://doi.org/10.1016/j.jes.2018.03.013.
[46] T. Sangeetha, Z. Guo, W. Liu, L. Gao, L. Wang, M. Cui, C. Chen, A. Wang, Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: Role of electrode positions and hydraulic retention times, Appl. Energy. 206 (2017) 1214–1224. https://doi.org/10.1016/j.apenergy.2017.10.026.
[47] Y.M. Chen, C.T. Wang, Y.C. Yang, Effect of wall boundary layer thickness on power performance of a recirculation microbial fuel cell, Energies. 11 (2018) 1–11. https://doi.org/10.3390/en11041003.
[48] D. Aaron, C. Tsouris, C.Y. Hamilton, A.P. Borole, Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy, Energies. 3 (2010) 592–606. https://doi.org/10.3390/en3040592.
[49] D. Klenert, F. Funke, L. Mattauch, B. O’Callaghan, Five Lessons from COVID-19 for Advancing Climate Change Mitigation, Environ. Resour. Econ. 76 (2020) 751–778. https://doi.org/10.1007/s10640-020-00453-w.
[50] G. Luderer, V. Krey, K. Calvin, J. Merrick, S. Mima, R. Pietzcker, J. Van Vliet, K. Wada, The role of renewable energy in climate stabilization: results from the EMF27 scenarios, Clim. Change. 123 (2014) 427–441. https://doi.org/10.1007/s10584-013-0924-z.
[51] M. Khanna, COVID-19: A Cloud with a Silver Lining for Renewable Energy?, Appl. Econ. Perspect. Policy. 43 (2021) 73–85. https://doi.org/https://doi.org/10.1002/aepp.13102.
[52] P. Chiranjeevi, G. Mohanakrishna, S. Venkata Mohan, Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration, Bioresour. Technol. 124 (2012) 364–370. https://doi.org/10.1016/j.biortech.2012.08.020.
[53] A. Elmekawy, H.M. Hegab, K. Vanbroekhoven, D. Pant, Techno-productive potential of photosynthetic microbial fuel cells through different configurations, Renew. Sustain. Energy Rev. 39 (2014) 617–627. https://doi.org/10.1016/j.rser.2014.07.116.
[54] X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol. 43 (2009) 7148–7152. https://doi.org/10.1021/es901950j.
[55] I.S. Chang, J.K. Jang, G.C. Gil, M. Kim, H.J. Kim, B.W. Cho, B.H. Kim, Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor, Biosens. Bioelectron. 19 (2004) 607–613. https://doi.org/10.1016/S0956-5663(03)00272-0.
[56] L.J. Zhang, H.C. Tao, X.Y. Wei, T. Lei, J.B. Li, A.J. Wang, W.M. Wu, Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell, Chemosphere. 89 (2012) 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011.
[57] A.W. Jeremiasse, H.V.M. Hamelers, C.J.N. Buisman, Microbial electrolysis cell with a microbial biocathode, Bioelectrochemistry. 78 (2010) 39–43. https://doi.org/10.1016/j.bioelechem.2009.05.005.
[58] S. Bajracharya, M. Sharma, G. Mohanakrishna, X. Dominguez Benneton, D.P.B.T.B. Strik, P.M. Sarma, D. Pant, An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond, Renew. Energy. 98 (2016) 153–170. https://doi.org/10.1016/j.renene.2016.03.002.
[59] Scopus.com, Scopus.com, (n.d.). https://doi.org/ht.
[60] S. Suzuki, M. Aizawa, BIOMASS CONVERSION TO ELECTRIC ENERGY., Nenryo Kyokaishi. 59 (1980) 164–170. https://doi.org/10.3775/jie.59.164.
[61] A.T. Najafabadi, N. Ng, E. Gyenge, Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells, Biosens. Bioelectron. 81 (2016) 103–110. https://doi.org/10.1016/j.bios.2016.02.054.
[62] C.E. Zhao, W.J. Wang, D. Sun, X. Wang, J.R. Zhang, J.J. Zhu, Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells, Chem. - A Eur. J. 20 (2014) 7091–7097. https://doi.org/10.1002/chem.201400272.
[63] G.G. Kumar, S. Hashmi, C. Karthikeyan, A. GhavamiNejad, M. Vatankhah-Varnoosfaderani, F.J. Stadler, Graphene oxide/carbon nanotube composite hydrogels - Versatile materials for microbial fuel cell applications, Macromol. Rapid Commun. 35 (2014) 1861–1865. https://doi.org/10.1002/marc.201400332.
[64] P.J. Sarma, K. Mohanty, Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode, J. Biosci. Bioeng. 126 (2018) 404–410. https://doi.org/10.1016/j.jbiosc.2018.03.009.
[65] C. Da Costa, Hadiyanto, Bioelectricity production from microalgae-microbial fuel cell technology (MMFC), MATEC Web Conf. 156 (2018) 1–4. https://doi.org/10.1051/matecconf/201815601017.
[66] H. Zhang, Z. Da, Y. Feng, Y. Wang, L. Cai, H. Cui, Enhancing the electricity generation and sludge reduction of sludge microbial fuel cell with graphene oxide and reduced graphene oxide, J. Clean. Prod. 186 (2018) 104–112. https://doi.org/10.1016/j.jclepro.2018.02.159.
[67] X.Q. Lin, Z.L. Li, B. Liang, J. Nan, A.J. Wang, Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell, Chemosphere. 219 (2019) 358–364. https://doi.org/10.1016/j.chemosphere.2018.11.212.
[68] A. Sumisha, J. Ashar, A. Asok, S. Karthick, K. Haribabu, Reduction of copper and generation of energy in double chamber microbial fuel cell using Shewanella putrefaciens, Sep. Sci. Technol. 0 (2019) 1–9. https://doi.org/10.1080/01496395.2019.1625919.
[69] B. Taşkan, E. Taşkan, H. Hasar, Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode, Environ. Prog. Sustain. Energy. (2020). https://doi.org/10.1002/ep.13407.
[70] S. Babanova, J. Jones, S. Phadke, M. Lu, C. Angulo, J. Garcia, K. Carpenter, R. Cortese, S. Chen, T. Phan, O. Bretschger, Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste, Water Environ. Res. 92 (2020) 60–72. https://doi.org/10.1002/wer.1183.
[71] J. Shen, Z. Du, J. Li, F. Cheng, Co-metabolism for enhanced phenol degradation and bioelectricity generation in microbial fuel cell, Bioelectrochemistry. 134 (2020) 107527. https://doi.org/10.1016/j.bioelechem.2020.107527.
[72] H. Wang, X. Long, J. Zhang, X. Cao, S. Liu, X. Li, Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell, Chemosphere. 241 (2020). https://doi.org/10.1016/j.chemosphere.2019.125097.
[73] K.R.S. Pamintuan, I.H.P. Bagumba, Z.D.G. Domingo, Compartmentalization studies of a deep-design batch Microbial Fuel Cell assembly, J. Phys. Conf. Ser. 1457 (2020). https://doi.org/10.1088/1742-6596/1457/1/012010.
[74] R. Kumar, L. Singh, Z.A. Wahid, M.F. Din, Exoelectrogens in microbial fuel cells toward bioelectricity generation : a review, (2015). https://doi.org/10.1002/er.
[75] Pranab K. Barua, Electricity Generation from Biowaste Based Microbial Fuel Cells, 1 (2010) 77–92.
[76] D. Selvaraj, A. Somanathan, Generation of electricity by the degradation of electro-Fenton pretreated latex wastewater using double chamber microbial fuel cell, (2020) 12496–12505. https://doi.org/10.1002/er.5503.
[77] C.H. Mark Ellse, Electricity and Thermal Physics, 2004.
[78] P. Perrot, A to Z of Thermodynamics., Oxford University Press, 1998.
[79] Roberto Ligrone, Biological Innovations that Built the World, Springer International Publishing, 2019.
[80] J. Yan, Handbook of Clean Energy Systems, Wiley, 2015.
[81] Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol. 42 (2008) 8101–8107. https://doi.org/10.1021/es801229j.
[82] J. Monod, The Growth of Bacterial Cultures, Annu. Rev. Microbiol. 3 (1949) 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103.
[83] L.R.F. Allen J. Bard, Electrochemical Methods: Fundamentals and Applications, Wiley. (2000).
[84] John T Stock; Mary Virginia Orna, Electrochemistry, past and present, Am. Chem. Soc. (1989).
[85] S.. Adler, High-Temperature Solid Oxide Fuel Cells for the 21st Century, Elsevier, 2016. https://doi.org/10.1016/C2011-0-09278-5.
[86] X. Fu, L. Fu, H. Imani Marrani, A Novel Adaptive Sliding Mode Control of Microbial Fuel Cell in the Presence of Uncertainty, J. Electr. Eng. Technol. 15 (2020) 2769–2776. https://doi.org/10.1007/s42835-020-00535-1.
[87] X. Zhang, A. Halme, MODELLING OF A MICROBIAL FUEL CELL PROCESS Xia-Chang Zhang and Aarne Halme Automation Technology Laboratory, Helsinki University of Technology, 02150 ESPOO, FINLAND, Biotechnol. Lett. 17 (1995) 809–814.
[88] B.T. R.P. Pinto, B. Srinivasan, M.-F. Manuel, A two-population bio-electrochemical model of a microbial fuel cell, Bioresour. Technol. 101 (2010). https://doi.org/10.1016/j.biortech.2010.01.122.
[89] K.S. Cristian Picioreanu, Ian M. Head, Krishna P. Katuri, Mark C.M. van Loosdrecht, A computational model for biofilm-based microbial fuel cells, Water Res. (2007) 2921–2940. https://doi.org/10.1016/j.watres.2007.04.009.
[90] M.A.M. Morteza Esfandyari, Mohmmad Ali Fanaei, Reza Gheshlaghi, Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella, Chem. Eng. Res. Des. 117 (2017) 34–42. https://doi.org/10.1016/j.cherd.2016.09.016.
[91] W. Verstraete, K. Rabaey, Critical Review Microbial Fuel Cells : Methodology and Technology †, Environ. Sci. Technol. 40 (2006) 5181–5192. https://doi.org/10.1021/es0605016.
[92] H. Richter, K. Mccarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello, D.R. Lovley, Electricity Generation by Geobacter sulfurreducens Attached to Gold Electrodes, (2008) 4376–4379.
[93] F. Zhao, R.C.T. Slade, J.R. Varcoe, Techniques for the study and development of microbial fuel cells: An electrochemical perspective, Chem. Soc. Rev. 38 (2009) 1926–1939. https://doi.org/10.1039/b819866g.
[94] V.G. Debabov, Electricity from microorganisms, Microbiology. 77 (2008) 123–131. https://doi.org/10.1134/S002626170802001X.
[95] Evelyn, Y. Li, A. Marshall, P.A. Gostomski, Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators, Rev. Environ. Sci. Biotechnol. 13 (2014) 35–51. https://doi.org/10.1007/s11157-013-9322-2.
[96] M. Rahimnejad, G.D. Najafpour, A.A. Ghoreyshi, F. Talebnia, G.C. Premier, G. Bakeri, J.R. Kim, S.E. Oh, Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture, J. Microbiol. 50 (2012) 575–580. https://doi.org/10.1007/s12275-012-2135-0.
[97] A. Thygesen, F.W. Poulsen, B. Min, I. Angelidaki, A.B. Thomsen, The effect of different substrates and humic acid on power generation in microbial fuel cell operation, Bioresour. Technol. 100 (2009) 1186–1191. https://doi.org/10.1016/j.biortech.2008.07.067.
[98] E. Zhang, Y. Cai, Y. Luo, Z. Piao, Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells, Can. J. Microbiol. 60 (2014) 753–759. https://doi.org/10.1139/cjm-2014-0389.
[99] D.H. Park, M. Laivenieks, M. V. Guettler, M.K. Jain, J.G. Zeikus, Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol. 65 (1999) 2912–2917. https://doi.org/10.1128/aem.65.7.2912-2917.1999.
[100] M. Rahimnejad, G.D. Najafpour, A.A. Ghoreyshi, M. Shakeri, H. Zare, Methylene blue as electron promoters in microbial fuel cell, Int. J. Hydrogen Energy. 36 (2011) 13335–13341. https://doi.org/10.1016/j.ijhydene.2011.07.059.
[101] J. Niessen, U. Schro, F. Scholz, Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch, 6 (2004) 955–958. https://doi.org/10.1016/j.elecom.2004.07.010.
[102] N. Thu, J. Lee, K. Hyun, I. Seop, G. Michael, B. Hong, Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences, 233 (2004) 77–82. https://doi.org/10.1016/j.femsle.2004.01.041.
[103] R. Kumar, L. Singh, A.W. Zularisam, Exoelectrogens : Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renew. Sustain. Energy Rev. 56 (2016) 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029.
[104] D.H. Park, J.G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng. 81 (2003) 348–355. https://doi.org/10.1002/bit.10501.
[105] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, 21 (2003) 1229–1232. https://doi.org/10.1038/nbt867.
[106] B.R. Ringeisen, R. Ray, B. Little, A miniature microbial fuel cell operating with an aerobic anode chamber, 165 (2007) 591–597. https://doi.org/10.1016/j.jpowsour.2006.10.026.
[107] K. Rabaey, N. Boon, S.D. Siciliano, W. Verstraete, K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer, 70 (2004). https://doi.org/10.1128/AEM.70.9.5373.
[108] M. Blatter, L. Delabays, C. Furrer, G. Huguenin, C.P. Cachelin, F. Fischer, Stretched 1000-L microbial fuel cell, J. Power Sources. 483 (2021). https://doi.org/10.1016/j.jpowsour.2020.229130.
[109] E. Leiva, E. Leiva-Aravena, I. Vargas, Acid water neutralization using microbial fuel cells: An alternative for acid mine drainage treatment, Water (Switzerland). 8 (2016) 1–9. https://doi.org/10.3390/w8110536.
[110] L. Zhuang, Y. Yuan, Y. Wang, S. Zhou, Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater, Bioresour. Technol. 123 (2012) 406–412. https://doi.org/10.1016/j.biortech.2012.07.038.
[111] Z. He, S.D. Minteer, L.T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol. 39 (2005) 5262–5267. https://doi.org/10.1021/es0502876.
[112] V.G. Rouzbeh Abbassi, Asheesh Kumar Yadav, Faisal Khan, Integrated Microbial Fuel Cells for Wastewater Treatment, 2020.
[113] F. Zhang, K.S. Jacobson, P. Torres, Z. He, Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell, Energy Environ. Sci. 3 (2010) 1347–1352. https://doi.org/10.1039/c001201g.
[114] F. Li, X. An, D. Wu, J. Xu, Y. Chen, W. Li, Y. Cao, X. Guo, X. Lin, C. Li, S. Liu, H. Song, Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells, Front. Microbiol. 10 (2019) 1–10. https://doi.org/10.3389/fmicb.2019.00409.
[115] F. Zhang, Z. Ge, J. Grimaud, J. Hurst, Z. He, In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant, Bioresour. Technol. 136 (2013) 316–321. https://doi.org/10.1016/j.biortech.2013.02.107.
[116] F. Qian, D.E. Morse, Miniaturizing microbial fuel cells, Trends Biotechnol. 29 (2011) 62–69. https://doi.org/10.1016/j.tibtech.2010.10.003.
[117] B.R. Ringeisen, E. Henderson, P.K. Wu, J. Pietron, R. Ray, B. Little, J.C. Biffinger, J.M. Jones-Meehan, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10, Environ. Sci. Technol. 40 (2006) 2629–2634. https://doi.org/10.1021/es052254w.
[118] D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, Bioresource Technology A review of the substrates used in microbial fuel cells ( MFCs ) for sustainable energy production, Bioresour. Technol. 101 (2010) 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
[119] S. Mateo, P. Cañizares, M.A. Rodrigo, F.J. Fernández-Morales, Reproducibility and robustness of microbial fuel cells technology, J. Power Sources. 412 (2019) 640–647. https://doi.org/10.1016/j.jpowsour.2018.12.007.
[120] A.J. Hutchinson, J.C. Tokash, B.E. Logan, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, J. Power Sources. 196 (2011) 9213–9219. https://doi.org/10.1016/j.jpowsour.2011.07.040.
[121] S. Hays, F. Zhang, B.E. Logan, Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater, J. Power Sources. 196 (2011) 8293–8300. https://doi.org/10.1016/j.jpowsour.2011.06.027.
[122] V. Watson, G. Estadt, Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells, 41 (2007) 3341–3346.
[123] K.Y. Cheng, G. Ho, R. Cord-Ruwisch, Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion, Environ. Sci. Technol. 45 (2011) 796–802. https://doi.org/10.1021/es102482j.
[124] P. Mani, T. Keshavarz, T.S. Chandra, G. Kyazze, Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber, Enzyme Microb. Technol. 96 (2017) 170–176. https://doi.org/10.1016/j.enzmictec.2016.10.012.
[125] V.R. Nimje, C.Y. Chen, H.R. Chen, C.C. Chen, Y.M. Huang, M.J. Tseng, K.C. Cheng, Y.F. Chang, Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis, Bioresour. Technol. 104 (2012) 315–323. https://doi.org/10.1016/j.biortech.2011.09.129.
[126] J.J. Fornero, M. Rosenbaum, M.A. Cotta, L.T. Angenent, Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte ph and improves anolyte ph, alkalinity, and conductivity, Environ. Sci. Technol. 44 (2010) 2728–2734. https://doi.org/10.1021/es9031985.
[127] R.I.C. Hard, L. Moore, Biological effects of magnetic fields: studies with microorganisms, (1979).
[128] A. Foletti, S. Grimaldi, A. Lisi, M. Ledda, A.R. Liboff, Bioelectromagnetic medicine: The role of resonance signaling, Electromagn. Biol. Med. 32 (2013) 484–499. https://doi.org/10.3109/15368378.2012.743908.
[129] S.P. Oliver, K.J. Boor, S.C. Murphy, S.E. Murinda, Food safety hazards associated with consumption of raw milk, Foodborne Pathog. Dis. 6 (2009) 793–806. https://doi.org/10.1089/fpd.2009.0302.
[130] J. Miyakoshi, Effects of static magnetic fields at the cellular level, Prog. Biophys. Mol. Biol. 87 (2005) 213–223. https://doi.org/10.1016/j.pbiomolbio.2004.08.008.
[131] W.W. Li, G.P. Sheng, X.W. Liu, P.J. Cai, M. Sun, X. Xiao, Y.K. Wang, Z.H. Tong, F. Dong, H.Q. Yu, Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells, Biosens. Bioelectron. 26 (2011) 3987–3992. https://doi.org/10.1016/j.bios.2010.11.027.
[132] Y. Yin, G. Huang, Y. Tong, Y. Liu, L. Zhang, Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field, J. Power Sources. 237 (2013) 58–63. https://doi.org/10.1016/j.jpowsour.2013.02.080.
[133] Z.H. Tong, H.Q. Yu, W.W. Li, Y.K. Wang, M. Sun, X.W. Liu, G.P. Sheng, Application of a weak magnetic field to improve microbial fuel cell performance, Ecotoxicology. 24 (2015) 2175–2180. https://doi.org/10.1007/s10646-015-1545-2.
[134] K.P. Katuri, K. Scott, I.M. Head, C. Picioreanu, T.P. Curtis, Microbial fuel cells meet with external resistance, Bioresour. Technol. 102 (2011) 2758–2766. https://doi.org/10.1016/j.biortech.2010.10.147.
[135] F. Chen, S. Zeng, Z. Luo, J. Ma, Q. Zhu, S. Zhang, A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation, Sep. Sci. Technol. 55 (2020) 2490–2499. https://doi.org/10.1080/01496395.2019.1641519.
[136] M. Kloch, R. Toczylowska-Maminska, Toward optimization of wood industry wastewater treatment in microbial fuel cells-mixed wastewaters approach, Energies. 13 (2020). https://doi.org/10.3390/en13010263.
[137] Y. Fan, S.-K. Han, H. Liu, Improved performance of CEA microbial fuel cells with increased reactor size, Energy Environ. Sci. 5 (2012) 8273. https://doi.org/10.1039/c2ee21964f.
[138] Y. Ma, S. You, B. Jing, Z. Xing, H. Chen, Y. Dai, C. Zhang, N. Ren, J. Zou, Biomass pectin-derived N, S-enriched carbon with hierarchical porous structure as a metal-free catalyst for enhancing bio-electricity generation, Int. J. Hydrogen Energy. 44 (2019) 16624–16638. https://doi.org/10.1016/j.ijhydene.2019.04.158.
[139] X. Wang, C. Yuan, C. Shao, S. Zhuang, J. Ye, B. Li, Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater, Environ. Res. 182 (2020) 109011. https://doi.org/10.1016/j.envres.2019.109011.
[140] B. Liang, K. Li, Y. Liu, X. Kang, Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell, Chem. Eng. J. 358 (2019) 1002–1011. https://doi.org/10.1016/j.cej.2018.09.217.
[141] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour. Technol. 102 (2011) 9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019.
[142] X.A. Walter, S. Forbes, J. Greenman, I.A. Ieropoulos, From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density, Sustain. Energy Technol. Assessments. 14 (2016) 74–79. https://doi.org/10.1016/j.seta.2016.01.006.
[143] E. Guerrini, M. Grattieri, S.P. Trasatti, M. Bestetti, P. Cristiani, Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes, Int. J. Hydrogen Energy. 39 (2014) 21837–21846. https://doi.org/10.1016/j.ijhydene.2014.06.132.
[144] F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone-Rossa, A.E. Thumser, R.C.T. Slade, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci. Technol. 42 (2008) 4971–4976. https://doi.org/10.1021/es8003766.
[145] M. Lu, S. Chen, S. Babanova, S. Phadke, M. Salvacion, A. Mirhosseini, S. Chan, K. Carpenter, R. Cortese, O. Bretschger, Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater, J. Power Sources. 356 (2017) 274–287. https://doi.org/10.1016/j.jpowsour.2017.03.132.
[146] Y. Jiang, A.C. Ulrich, Y. Liu, Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells, Bioresour. Technol. 139 (2013) 349–354. https://doi.org/10.1016/j.biortech.2013.04.050.
[147] X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito, B.E. Logan, Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells, Environ. Sci. Technol. 43 (2009) 6870–6874. https://doi.org/10.1021/es900997w.
[148] S. Wu, W. He, W. Yang, Y. Ye, X. Huang, B.E. Logan, Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater, J. Power Sources. 356 (2017) 348–355. https://doi.org/10.1016/j.jpowsour.2017.01.041.
[149] I. Ieropoulos, J. Greenman, C. Melhuish, Microbial fuel cells based on carbon veil electrodes : Stack configuration and scalability, (2008) 1228–1240. https://doi.org/10.1002/er.
[150] K. Artyushkova, J.A. Cornejo, L.K. Ista, S. Babanova, C. Santoro, P. Atanassov, A.J. Schuler, Relationship between surface chemistry, biofilm structure, and electron transfer in Shewanella anodes , Biointerphases. 10 (2015) 019013. https://doi.org/10.1116/1.4913783.
[151] C. Santoro, M. Guilizzoni, J.P. Correa Baena, U. Pasaogullari, A. Casalegno, B. Li, S. Babanova, K. Artyushkova, P. Atanassov, The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells, Carbon N. Y. 67 (2014) 128–139. https://doi.org/10.1016/j.carbon.2013.09.071.
[152] S. Srikanth, E. Marsili, M.C. Flickinger, D.R. Bond, Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes, Biotechnol. Bioeng. 99 (2008) 1065–1073. https://doi.org/10.1002/bit.21671.
[153] W. Yang, K.Y. Kim, P.E. Saikaly, B.E. Logan, The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry, Energy Environ. Sci. 10 (2017) 1025–1033. https://doi.org/10.1039/c7ee00910k.
[154] L. Zhao, J. Li, F. Battaglia, Z. He, Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells, J. Power Sources. 333 (2016) 83–87. https://doi.org/10.1016/j.jpowsour.2016.09.113.
[155] B.E. Logan, M.J. Wallack, K.Y. Kim, W. He, Y. Feng, P.E. Saikaly, Assessment of Microbial Fuel Cell Configurations and Power Densities, Environ. Sci. Technol. Lett. 2 (2015) 206–214. https://doi.org/10.1021/acs.estlett.5b00180.
[156] J. Kretzschmar, S. Riedl, R.K. Brown, U. Schröder, F. Harnisch, eLatrine: Lessons Learned from the Development of a Low-Tech MFC Based on Cardboard Electrodes for the Treatment of Human Feces, J. Electrochem. Soc. 164 (2017) H3065–H3072. https://doi.org/10.1149/2.0121703jes.
[157] A. Baudler, S. Riedl, U. Schröder, Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes, Front. Energy Res. 2 (2014) 1–6. https://doi.org/10.3389/fenrg.2014.00030.
[158] F. Calignano, T. Tommasi, D. Manfredi, A. Chiolerio, Additive Manufacturing of a Microbial Fuel Cell - A detailed study, Sci. Rep. 5 (2015) 1–10. https://doi.org/10.1038/srep17373.
[159] A. Dewan, H. Beyenal, Z. Lewandowski, Scaling up microbial fuel cells, Environ. Sci. Technol. 42 (2008) 7643–7648. https://doi.org/10.1021/es800775d.
[160] A. ter Heijne, H.V.M. Hamelers, M. Saakes, C.J.N. Buisman, Performance of non-porous graphite and titanium-based anodes in microbial fuel cells, Electrochim. Acta. 53 (2008) 5697–5703. https://doi.org/10.1016/j.electacta.2008.03.032.
[161] G. Lepage, F.O. Albernaz, G. Perrier, G. Merlin, Characterization of a microbial fuel cell with reticulated carbon foam electrodes, Bioresour. Technol. 124 (2012) 199–207. https://doi.org/10.1016/j.biortech.2012.07.067.
[162] S. Kalathil, S.A. Patil, D. Pant, Microbial fuel cells: Electrode materials, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-409547-2.13459-6.
[163] U. Schröder, J. Nießen, F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chemie - Int. Ed. 42 (2003) 2880–2883. https://doi.org/10.1002/anie.200350918.
[164] J. Niessen, U. Schröder, M. Rosenbaum, F. Scholz, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun. 6 (2004) 571–575. https://doi.org/10.1016/j.elecom.2004.04.006.
[165] D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, D.R. Lovley, Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials, Biosens. Bioelectron. 21 (2006) 2058–2063. https://doi.org/10.1016/j.bios.2006.01.033.
[166] S. Cheng, H. Liu, B.E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol. 40 (2006) 2426–2432. https://doi.org/10.1021/es051652w.
[167] D. Das, Microbial Fuel Cell, Springer International Publishing, Cham, 2018. https://doi.org/10.1007/978-3-319-66793-5.
[168] A. Dumitru, K. Scott, Anode Materials for Microbial Fuel Cells, Elsevier Ltd., 2016. https://doi.org/10.1016/B978-1-78242-375-1.00004-6.
[169] C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry, A. Bergel, Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials, Electrochim. Acta. 53 (2007) 468–473. https://doi.org/10.1016/j.electacta.2007.06.069.
[170] X. Zhu, B.E. Logan, Copper anode corrosion affects power generation in microbial fuel cells, J. Chem. Technol. Biotechnol. 89 (2014) 471–474. https://doi.org/10.1002/jctb.4156.
[171] S.S. Rikame, A.A. Mungray, A.K. Mungray, Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal, Electrochim. Acta. 275 (2018) 8–17. https://doi.org/10.1016/j.electacta.2018.04.141.
[172] T. Yamashita, H. Yokoyama, Molybdenum anode: A novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes, Biotechnol. Biofuels. 11 (2018) 1–13. https://doi.org/10.1186/s13068-018-1046-7.
[173] A. Baudler, I. Schmidt, M. Langner, A. Greiner, U. Schröder, Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems, Energy Environ. Sci. 8 (2015) 2048–2055. https://doi.org/10.1039/c5ee00866b.
[174] X. Zhou, X. Chen, H. Li, J. Xiong, X. Li, W. Li, Surface oxygen-rich titanium as anode for high performance microbial fuel cell, Electrochim. Acta. 209 (2016) 582–590. https://doi.org/10.1016/j.electacta.2016.05.103.
[175] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol. 41 (2007) 3341–3346. https://doi.org/10.1021/es062644y.
[176] B. Delord, W. Neri, K. Bertaux, A. Derre, I. Ly, P. Poulin, B. Delord, I. Ly, Carbon Nanotube Fiber Mats For Microbial Fuel Cell Electrodes, Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.06.170.
[177] U. Schröder, F. Harnisch, L.T. Angenent, Microbial electrochemistry and technology: Terminology and classification, Energy Environ. Sci. 8 (2015) 513–519. https://doi.org/10.1039/c4ee03359k.
[178] Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, A graphene modified anode to improve the performance of microbial fuel cells, J. Power Sources. 196 (2011) 5402–5407. https://doi.org/10.1016/j.jpowsour.2011.02.067.
[179] H.M.F. Cells, Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for, (2012) 2394–2400.
[180] P. Samuelson, H. Wernérus, M. Svedberg, S. Ståhl, Staphylococcal surface display of metal-binding polyhistidyl peptides, Appl. Environ. Microbiol. 66 (2000) 1243–1248. https://doi.org/10.1128/AEM.66.3.1243-1248.2000.
[181] L. Du, M. Huang, Q. Xu, J. Zhang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized on eggshell membrane modified glassy carbon electrode, Asian J. Chem. 27 (2015) 153–157. https://doi.org/10.14233/ajchem.2015.16820.
[182] G. Georgiou, C. Stathopoulos, P.S. Daugherty, A.R. Nayak, B.L. Iverson, R. Curtiss, Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines, Nat. Biotechnol. 15 (1997) 29–34. https://doi.org/10.1038/nbt0197-29.
[183] S. Fishilevich, L. Amir, Y. Fridman, A. Aharoni, L. Alfonta, Surface display of redox enzymes in microbial fuel cells, J. Am. Chem. Soc. 131 (2009) 12052–12053. https://doi.org/10.1021/ja9042017.
[184] C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review, J. Power Sources. 356 (2017) 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
[185] K. Kinoshita, Electrochemical Oxygen Technology, John Wiley & Sons, Hoboken New Jersey, USA, 1992.
[186] S.J. Rowley-Neale, J.M. Fearn, D.A.C. Brownson, G.C. Smith, X. Ji, C.E. Banks, 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction, Nanoscale. 8 (2016) 14767–14777. https://doi.org/10.1039/c6nr04073j.
[187] L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano. 4 (2010) 1321–1326. https://doi.org/10.1021/nn901850u.
[188] M.R. Gao, Y.F. Xu, J. Jiang, Y.R. Zheng, S.H. Yu, Water oxidation electrocatalyzed by an efficient Mn3O 4/CoSe2 nanocomposite, J. Am. Chem. Soc. 134 (2012) 2930–2933. https://doi.org/10.1021/ja211526y.
[189] A.F. Khan, D.A.C. Brownson, E.P. Randviir, G.C. Smith, C.E. Banks, 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine, Anal. Chem. 88 (2016) 9729–9737. https://doi.org/10.1021/acs.analchem.6b02638.
[190] J. Winfield, I. Gajda, J. Greenman, I. Ieropoulos, A review into the use of ceramics in microbial fuel cells, Bioresour. Technol. 215 (2016) 296–303. https://doi.org/10.1016/j.biortech.2016.03.135.
[191] C.R. and L.B. Kim Y, Reverse Electrodialysis Supported Microbial Fuel Cells and Microbial Electrolysis Cells, 2015. https://patentimages.storage.googleapis.com/ea/69/72/bc05cb7485360e/US9112217.pdf.
[192] F. Qian, M. Baum, Q. Gu, D.E. Morse, A 1.5 μl microbial fuel cell for on-chip bioelectricity generation, Lab Chip. 9 (2009) 3076–3081. https://doi.org/10.1039/b910586g.
[193] Y. Fan, S.K. Han, H. Liu, Improved performance of CEA microbial fuel cells with increased reactor size, Energy Environ. Sci. 5 (2012) 8273–8280. https://doi.org/10.1039/c2ee21964f.
[194] Y. Fan, H. Hu, H. Liu, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms, Environ. Sci. Technol. 41 (2007) 8154–8158. https://doi.org/10.1021/es071739c.
[195] X. Zhang, S. Cheng, X. Huang, B.E. Logan, The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells, Energy Environ. Sci. 3 (2010) 659–664. https://doi.org/10.1039/b927151a.
[196] S. Venkata Mohan, G. Mohanakrishna, S. Srikanth, P.N. Sarma, Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia, Fuel. 87 (2008) 2667–2676. https://doi.org/10.1016/j.fuel.2008.03.002.
[197] Y. Fan, H. Hu, H. Liu, Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration, 171 (2007) 348–354. https://doi.org/10.1016/j.jpowsour.2007.06.220.
[198] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol. 39 (2005) 5488–5493. https://doi.org/10.1021/es050316c.
[199] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol. 38 (2004) 4040–4046. https://doi.org/10.1021/es0499344.
[200] A. Dekker, A. Ter Heijne, M. Saakes, H.V.M. Hamelers, C.J.N. Buisman, Analysis and improvement of a scaled-up and stacked microbial fuel cell, Environ. Sci. Technol. 43 (2009) 9038–9042. https://doi.org/10.1021/es901939r.
[201] X. Zhang, S. Cheng, X. Huang, B.E. Logan, Improved performance of single-chamber microbial fuel cells through control of membrane deformation, Biosens. Bioelectron. 25 (2010) 1825–1828. https://doi.org/10.1016/j.bios.2009.11.018.
[202] J. Chouler, I. Bentley, F. Vaz, A. O’Fee, P.J. Cameron, M. Di Lorenzo, Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors, Electrochim. Acta. 231 (2017) 319–326. https://doi.org/10.1016/j.electacta.2017.01.195.
[203] C. Li, L. Wang, X. Wang, C. Li, Q. Xu, G. Li, Fabrication of a SGO/PVDF-g-PSSA composite proton-exchange membrane and its enhanced performance in microbial fuel cells, J. Chem. Technol. Biotechnol. 94 (2019) 398–408. https://doi.org/10.1002/jctb.5783.
[204] G. Hernández-Flores, A. Andrio, V. Compañ, O. Solorza-Feria, H.M. Poggi-Varaldo, Synthesis and characterization of organic agar-based membranes for microbial fuel cells, J. Power Sources. 435 (2019) 226772. https://doi.org/10.1016/j.jpowsour.2019.226772.
[205] K. Ben Liew, J.X. Leong, W.R. Wan Daud, A. Ahmad, J.J. Hwang, W. Wu, Incorporation of silver graphene oxide and graphene oxide nanoparticles in sulfonated polyether ether ketone membrane for power generation in microbial fuel cell, J. Power Sources. 449 (2020) 227490. https://doi.org/10.1016/j.jpowsour.2019.227490.
[206] A. Mayahi, H. Ilbeygi, A.F. Ismail, J. Jaafar, W.R.W. Daud, D. Emadzadeh, E. Shamsaei, D. Martin, M. Rahbari-Sisakht, M. Ghasemi, J. Zaidi, SPEEK/cSMM membrane for simultaneous electricity generation and wastewater treatment in microbial fuel cell, J. Chem. Technol. Biotechnol. 90 (2015) 641–647. https://doi.org/10.1002/jctb.4622.
[207] A. Sivasankaran, D. Sangeetha, Y.-H. Ahn, Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated SiO 2 for microbial fuel cell application, Chem. Eng. J. 289 (2016) 442–451. https://doi.org/10.1016/j.cej.2015.12.095.
[208] A.G. Kumar, S. Saha, H. Komber, B.R. Tiwari, M.M. Ghangrekar, B. Voit, S. Banerjee, Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell, Eur. Polym. J. 118 (2019) 451–464. https://doi.org/10.1016/j.eurpolymj.2019.06.014.
[209] P. Kumar. R, R.P. Bharti, Nanocomposite Polymer Electrolyte Membrane for High Performance Microbial Fuel Cell: Synthesis, Characterization and Application, J. Electrochem. Soc. 166 (2019) F1190–F1199. https://doi.org/10.1149/2.0671915jes.
[210] H. Nagar, N. Badhrachalam, V.V.B. Rao, S. Sridhar, A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation, Mater. Chem. Phys. 224 (2019) 175–185. https://doi.org/10.1016/j.matchemphys.2018.12.023.
[211] P. Izadi, M. Rahimnejad, Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell, Biofuel Res. J. 1 (2014) 34–38. https://doi.org/10.18331/BRJ2015.1.1.8.
[212] Y. Sharma, B. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresour. Technol. 101 (2010) 1844–1850. https://doi.org/10.1016/j.biortech.2009.10.040.
[213] G. Najafpour, M. Rahimnejad, N. Mokhtarian, W. Ramli, W. Daud, A.A. Ghoreyshi, Bioconversion of Whey to Electrical Energy in a Biofuel Cell Using Saccharomyces cerevisiae, World Appl. Sci. J. 8 (2010) 1–5. Effect of mass transfer on performance of microbial fuel cell.
[214] S. Antonio, F. Church, Applied Microbiology Bioteclmology Biological fuel cells with sulphide storage capacity, (1991) 128–133.
[215] Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv. 25 (2007) 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
[216] L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, Z. Wang, Advances in microbial fuel cells for wastewater treatment, 71 (2017) 388–403. https://doi.org/10.1016/j.rser.2016.12.069.
[217] H. Liu, S. Grot, B.E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol. 39 (2005) 4317–4320. https://doi.org/10.1021/es050244p.
[218] Y. Wang, X. Liu, W. Li, F. Li, Y. Wang, G. Sheng, R.J. Zeng, H. Yu, A microbial fuel cell – membrane bioreactor integrated system for cost-effective wastewater treatment, Appl. Energy. 98 (2012) 230–235. https://doi.org/10.1016/j.apenergy.2012.03.029.
[219] R.K. Jung, J. Dec, M.A. Bruns, B.E. Logan, Removal of odors from swine wastewater by using microbial fuel cells, Appl. Environ. Microbiol. 74 (2008) 2540–2543. https://doi.org/10.1128/AEM.02268-07.
[220] B. Min, J.R. Kim, S.E. Oh, J.M. Regan, B.E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Res. 39 (2005) 4961–4968. https://doi.org/10.1016/j.watres.2005.09.039.
[221] K.Y. Kim, W. Yang, B.E. Logan, Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells, Water Res. 80 (2015) 41–46. https://doi.org/10.1016/j.watres.2015.05.021.
[222] J.A. Quintero, L.E. Rincón, C.A. Cardona, Production of bioethanol from agroindustrial residues as feedstocks, 2011. https://doi.org/10.1016/B978-0-12-385099-7.00011-5.
[223] B.E. Logan, Extracting Hydrogen and Electricity from Renewable Resources, Environ. Sci. Technol. 38 (2004).
[224] K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett. 25 (2003) 1531–1535. https://doi.org/10.1023/A:1025484009367.
[225] A.S. Mathuriya, J. V Yakhmi, Microbial fuel cells – Applications for generation of electrical power and beyond, 7828 (2014) 1–17. https://doi.org/10.3109/1040841X.2014.905513.
[226] J. Hu, Q. Zhang, D.J. Lee, H.H. Ngo, Feasible use of microbial fuel cells for pollution treatment, Renew. Energy. 129 (2018) 824–829. https://doi.org/10.1016/j.renene.2017.02.001.
[227] Y. Cui, B. Lai, X. Tang, Microbial fuel cell-based biosensors, Biosensors. 9 (2019) 1–18. https://doi.org/10.3390/bios9030092.
[228] P. Jegathambal, R.R. Nisha, K. Parameswari, M.S.P. Subathra, Desalination and removal of organic pollutants using electrobiochemical reactor, Appl. Water Sci. 9 (2019) 1–10. https://doi.org/10.1007/s13201-019-0990-0.
[229] A.S. Mathuriya, J. V. Yakhmi, Microbial fuel cells to recover heavy metals, Environ. Chem. Lett. 12 (2014) 483–494. https://doi.org/10.1007/s10311-014-0474-2.
[230] B. Xu, Z. Ge, Z. He, Sediment microbial fuel cells for wastewater treatment: Challenges and opportunities, Environ. Sci. Water Res. Technol. 1 (2015) 279–284. https://doi.org/10.1039/c5ew00020c.
[231] F. Zhang, L. Tian, Z. He, Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes, J. Power Sources. 196 (2011) 9568–9573. https://doi.org/10.1016/j.jpowsour.2011.07.037.
[232] L.M. Tender, S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman, J. Melhado, R.C. Tyce, D. Flynn, R. Petrecca, J. Dobarro, The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy, J. Power Sources. 179 (2008) 571–575. https://doi.org/10.1016/j.jpowsour.2007.12.123.
[233] C. Donovan, A. Dewan, D. Heo, Z. Lewandowski, H. Beyenal, Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring, J. Power Sources. 233 (2013) 79–85. https://doi.org/10.1016/j.jpowsour.2012.12.112.
[234] M.I.N. Ma’arof, G.T. Chala, S.A. Ravichanthiran, A.F. Diasip, A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices, Int. J. Mech. Eng. Technol. 9 (2018) 98–105.
[235] J. Prasad, R.K. Tripathi, Voltage control of sediment microbial fuel cell to power the AC load, J. Power Sources. 450 (2020) 227721. https://doi.org/10.1016/j.jpowsour.2020.227721.
[236] Y. Feng, W. Barr, W.F.H. Jr, Neural network processing of microbial fuel cell signals for the identi fi cation of chemicals present in water, J. Environ. Manage. 120 (2013) 84–92. https://doi.org/10.1016/j.jenvman.2013.01.018.
[237] B.H. Kim, I.S. Chang, G.C. Gil, H.S. Park, H.J. Kim, Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell, Biotechnol. Lett. 25 (2003) 541–545. https://doi.org/10.1023/A:1022891231369.
[238] J. Liu, B. Mattiasson, Microbial BOD sensors for wastewater analysis, Water Res. 36 (2002) 3786–3802. https://doi.org/10.1016/S0043-1354(02)00101-X.
[239] Y. Feng, W. Barr, W.F. Harper, Neural network processing of microbial fuel cell signals for the identification of chemicals present in water, J. Environ. Manage. 120 (2013) 84–92. https://doi.org/10.1016/j.jenvman.2013.01.018.
[240] C. Melhuish, I. Ieropoulos, J. Greenman, I. Horsfield, Energetically autonomous robots: Food for thought, Auton. Robots. 21 (2006) 187–198. https://doi.org/10.1007/s10514-006-6574-5.
[241] H. Moon, I.S. Chang, K.H. Kang, J.K. Jang, B.H. Kim, Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand ( BOD ) sensor, (2004) 1717–1721.
[242] C.D. Markfort, M. Hondzo, Dissolved Oxygen Measurements in Aquatic Environments: The Effects of Changing Temperature and Pressure on Three Sensor Technologies, J. Environ. Qual. 38 (2009) 1766–1774. https://doi.org/10.2134/jeq2008.0197.
[243] X.C. Abrevaya, N.J. Sacco, M.C. Bonetto, A. Hilding-Ohlsson, E. Cortón, Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses, Biosens. Bioelectron. 63 (2015) 591–601. https://doi.org/10.1016/j.bios.2014.04.053.
[244] L.G. Miller, R.S. Oremland, Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes, Extremophiles. 12 (2008) 837–848. https://doi.org/10.1007/s00792-008-0191-5.
[245] M. Mehanna and B.E. Logan, Microbial desalination cell for simultaneous water desalination and energy production, (2010).
[246] Y. Kim, B.E. Logan, Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination, Environ. Sci. Technol. 45 (2011) 5840–5845. https://doi.org/10.1021/es200584q.
[247] M. Mehanna, P.D. Kiely, D.F. Call, B.E. Logan, Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production, Environ. Sci. Technol. 44 (2010) 9578–9583. https://doi.org/10.1021/es1025646.
[248] Y. Qu, Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, B.E. Logan, Salt removal using multiple microbial desalination cells under continuous flow conditions, Desalination. 317 (2013) 17–22. https://doi.org/10.1016/j.desal.2013.02.016.
[249] M.S. Albert Moat, John Foster, Microbial Physiology, 1979.
[250] H.C. Tao, W. Li, M. Liang, N. Xu, J.R. Ni, W.M. Wu, A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation, Bioresour. Technol. 102 (2011) 4774–4778. https://doi.org/10.1016/j.biortech.2011.01.057.
[251] C. Choi, Y. Cui, Recovery of silver from wastewater coupled with power generation using a microbial fuel cell, Bioresour. Technol. 107 (2012) 522–525. https://doi.org/10.1016/j.biortech.2011.12.058.
[252] T. Catal, H. Bermek, H. Liu, Removal of selenite from wastewater using microbial fuel cells, Biotechnol. Lett. 31 (2009) 1211–1216. https://doi.org/10.1007/s10529-009-9990-8.
[253] W. Yan, Y. Xiao, W. Yan, R. Ding, S. Wang, F. Zhao, The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review, Chem. Eng. J. 358 (2019) 1421–1437. https://doi.org/10.1016/j.cej.2018.10.128.
[254] M.S. De Ilurdoz, J.J. Sadhwani, J.V. Reboso, Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review, J. Water Process Eng. 45 (2022) 102474. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102474.
[255] J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, K.M.Y. Leung, R.W.S. Lai, C. Galbán-Malagón, A.D. Adell, J. Mondon, M. Metian, R.A. Marchant, A. Bouzas-Monroy, A. Cuni-Sanchez, A. Coors, P. Carriquiriborde, M. Rojo, C. Gordon, M. Cara, M. Moermond, T. Luarte, V. Petrosyan, Y. Perikhanyan, C.S. Mahon, C.J. McGurk, T. Hofmann, T. Kormoker, V. Iniguez, J. Guzman-Otazo, J.L. Tavares, F. Gildasio De Figueiredo, M.T.P. Razzolini, V. Dougnon, G. Gbaguidi, O. Traoré, J.M. Blais, L.E. Kimpe, M. Wong, D. Wong, R. Ntchantcho, J. Pizarro, G.-G. Ying, C.-E. Chen, M. Páez, J. Martínez-Lara, J.-P. Otamonga, J. Poté, S.A. Ifo, P. Wilson, S. Echeverría-Sáenz, N. Udikovic-Kolic, M. Milakovic, D. Fatta-Kassinos, L. Ioannou-Ttofa, V. Belušová, J. Vymazal, M. Cárdenas-Bustamante, B.A. Kassa, J. Garric, A. Chaumot, P. Gibba, I. Kunchulia, S. Seidensticker, G. Lyberatos, H.P. Halldórsson, M. Melling, T. Shashidhar, M. Lamba, A. Nastiti, A. Supriatin, N. Pourang, A. Abedini, O. Abdullah, S.S. Gharbia, F. Pilla, B. Chefetz, T. Topaz, K.M. Yao, B. Aubakirova, R. Beisenova, L. Olaka, J.K. Mulu, P. Chatanga, V. Ntuli, N.T. Blama, S. Sherif, A.Z. Aris, L.J. Looi, M. Niang, S.T. Traore, R. Oldenkamp, O. Ogunbanwo, M. Ashfaq, M. Iqbal, Z. Abdeen, A. O’Dea, J.M. Morales-Saldaña, M. Custodio, H. de la Cruz, I. Navarrete, F. Carvalho, A.B. Gogra, B.M. Koroma, V. Cerkvenik-Flajs, M. Gombač, M. Thwala, K. Choi, H. Kang, J.L.C. Ladu, A. Rico, P. Amerasinghe, A. Sobek, G. Horlitz, A.K. Zenker, A.C. King, J.-J. Jiang, R. Kariuki, M. Tumbo, U. Tezel, T.T. Onay, J.B. Lejju, Y. Vystavna, Y. Vergeles, H. Heinzen, A. Pérez-Parada, D.B. Sims, M. Figy, D. Good, C. Teta, Pharmaceutical pollution of the world’s rivers, Proc. Natl. Acad. Sci. 119 (2022) e2113947119. https://doi.org/10.1073/pnas.2113947119.
[256] P. Bhatt, C.-H. Jeon, W. Kim, Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant, Chemosphere. 298 (2022) 134344. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134344.
[257] P. Bhatt, G. Bhandari, K. Bhatt, H. Simsek, Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy, Chemosphere. 306 (2022) 135576. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135576.
[258] F. Baquero, J.-L. Martínez, R. Cantón, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol. 19 (2008) 260–265. https://doi.org/10.1016/j.copbio.2008.05.006.
[259] Y. Feng, X. Wang, B.E. Logan, H. Lee, Brewery wastewater treatment using air-cathode microbial fuel cells, Appl. Microbiol. Biotechnol. 78 (2008) 873–880. https://doi.org/10.1007/s00253-008-1360-2.
[260] B. Min, B.E. Logan, Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell, Environ. Sci. Technol. 38 (2004) 5809–5814. https://doi.org/10.1021/es0491026.
[261] Q. Wen, F. Kong, H. Zheng, J. Yin, D. Cao, Y. Ren, G. Wang, Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell, J. Power Sources. 196 (2011) 2567–2572. https://doi.org/10.1016/j.jpowsour.2010.10.085.
[262] P. Bhatt, G. Bhandari, R.F. Turco, Z. Aminikhoei, K. Bhatt, H. Simsek, Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product, Environ. Pollut. 309 (2022) 119688. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119688.
[263] S. Patil, F. Harnisch, U. Schröder, Toxicity Response of Electroactive Microbial Biofilms-A Decisive Feature for Potential Biosensor and Power Source Applications, ChemPhysChem. 11 (2010) 2834–2837. https://doi.org/10.1002/cphc.201000218.
[264] Y. Hindatu, M.S.M. Annuar, A.M. Gumel, Mini-review: Anode modification for improved performance of microbial fuel cell, Renew. Sustain. Energy Rev. 73 (2017) 236–248. https://doi.org/10.1016/j.rser.2017.01.138.
[265] D. Nosek, P. Jachimowicz, A. Cydzik-Kwiatkowska, Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells, Energies. 13 (2020) 6596. https://doi.org/10.3390/en13246596.
[266] Q. Yang, D. Luo, X. Liu, T. Guo, X. Zhao, X. Zheng, W. Wang, Improving the anode performance of microbial fuel cell with carbon nanotubes supported cobalt phosphate catalyst, Bioelectrochemistry. 142 (2021) 107941. https://doi.org/10.1016/j.bioelechem.2021.107941.
[267] R. Liang, Y. Du, P. Xiao, J. Cheng, S. Yuan, Y. Chen, J. Yuan, J. Chen, Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments, Nanomaterials. 11 (2021) 1248. https://doi.org/10.3390/nano11051248.
[268] X. Gao, S. Qiu, Z. Lin, X. Xie, W. Yin, X. Lu, Carbon-Based Composites as Anodes for Microbial Fuel Cells : Recent Advances and Challenges, (2021) 1–21. https://doi.org/10.1002/cplu.202100292.
[269] J. Wang, M.-F. He, D. Zhang, Z. Ren, T. Song, J. Xie, Simultaneous degradation of tetracycline by a microbial fuel cell and its toxicity evaluation by zebrafish, RSC Adv. 7 (2017) 44226–44233. https://doi.org/10.1039/C7RA07799H.
[270] R. Rani, D. Sharma, S. Kumar, Optimization of operating conditions of miniaturize single chambered microbial fuel cell using NiWO 4 / graphene oxide modi fi ed anode for performance improvement and microbial communities dynamics, Bioresour. Technol. 285 (2019) 121337. https://doi.org/10.1016/j.biortech.2019.121337.
[271] M.A. Carreon, V. V. Guliants, Novel macroporous vanadium-phosphorus-oxides with three-dimensional arrays of spherical voids, in: Ref. Modul. Chem. Mol. Sci. Chem. Eng., Comprehensive Inorganic Chemistry II (Second Edition), 2002: pp. 309–316. https://doi.org/10.1016/S0167-2991(02)80557-2.
[272] G. Centi, S. Perathoner, Mixed-Metal Oxides, in: Compr. Inorg. Chem. II, Elsevier, 2013: pp. 153–184. https://doi.org/10.1016/B978-0-08-097774-4.00718-X.
[273] S. Zhang, H.-L. Song, X.-L. Yang, Y.-L. Yang, K.-Y. Yang, X.-Y. Wang, Fate of tetracycline and sulfamethoxazole and their corresponding resistance genes in microbial fuel cell coupled constructed wetlands, RSC Adv. 6 (2016) 95999–96005. https://doi.org/10.1039/C6RA20509G.
[274] L. Zhang, X. Yin, S.F.Y. Li, Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system, Chem. Eng. J. 276 (2015) 185–192. https://doi.org/10.1016/j.cej.2015.04.065.
[275] Y.-T. Chang, C.-W. Yang, Y.-J. Chang, T.-C. Chang, D.-J. Wei, The Treatment of PPCP-Containing Sewage in an Anoxic/Aerobic Reactor Coupled with a Novel Design of Solid Plain Graphite-Plates Microbial Fuel Cell, Biomed Res. Int. 2014 (2014) 1–13. https://doi.org/10.1155/2014/765652.
[276] W. Miran, J. Jang, M. Nawaz, A. Shahzad, D.S. Lee, Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells, Sci. Total Environ. 627 (2018) 1058–1065. https://doi.org/10.1016/j.scitotenv.2018.01.326.
[277] W. Guo, Removal of Chloramphenicol and Simultaneous Electricity Generation by Using Microbial Fuel Cell Technology, Int. J. Electrochem. Sci. 11 (2016) 5128–5139. https://doi.org/10.20964/2016.06.42.
[278] H. Song, W. Guo, M. Liu, J. Sun, Performance of microbial fuel cells on removal of metronidazole, Water Sci. Technol. 68 (2013) 2599–2604. https://doi.org/10.2166/wst.2013.541.
[279] E. Zhang, Q. Yu, W. Zhai, F. Wang, K. Scott, High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation, Bioresour. Technol. 249 (2018) 76–81. https://doi.org/10.1016/j.biortech.2017.10.005.
[280] Q. Zhang, Y. Zhang, D. Li, Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community, Bioresour. Technol. 229 (2017) 104–110. https://doi.org/10.1016/j.biortech.2017.01.026.
[281] S.-J. Huang, K.A. Dwivedi, S. Kumar, C.-T. Wang, Multiwall Carbon Nanotubes–Coated Graphite-Felt Anode for Efficient Removal of Ciprofloxacin from Domestic Wastewater in Dual-Chambered Microbial Fuel Cells, J. Environ. Eng. 148 (2022). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001991.
[282] S.-J. Huang, K.A. Dwivedi, S. Kumar, C.-T. Wang, A.K. Yadav, Binder-free NiO/MnO2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell, Environ. Pollut. 317 (2023) 120578. https://doi.org/10.1016/j.envpol.2022.120578.
[283] T. Wang, Y. Yan, Y. Luo, Determination of norfloxacin content using bovine serum albumin as a fluorescence probe by synchronous fluorescence spectroscopy, Optik (Stuttg). 144 (2017) 393–396. https://doi.org/10.1016/j.ijleo.2017.06.066.
[284] J. Xu, X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, X. Xu, Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support, J. Hazard. Mater. 225–226 (2012) 36–45. https://doi.org/10.1016/j.jhazmat.2012.04.061.
[285] C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater. 164 (2009) 923–928. https://doi.org/10.1016/j.jhazmat.2008.08.089.
[286] A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment, (2008). https://doi.org/10.1016/j.tibtech.2008.04.008.
[287] R. Li, T. Li, Y. Wan, X. Zhang, X. Liu, R. Li, H. Pu, T. Gao, X. Wang, Q. Zhou, Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems, J. Hazard. Mater. 421 (2022) 126740. https://doi.org/10.1016/j.jhazmat.2021.126740.
[288] F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions, Chem. Eng. J. 285 (2016) 588–595. https://doi.org/10.1016/j.cej.2015.10.039.
[289] M.H. Do, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, P. Sharma, A. Pandey, X.T. Bui, X. Zhang, Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater, Sci. Total Environ. 795 (2021) 148755. https://doi.org/10.1016/j.scitotenv.2021.148755.
[290] H.-F. Cui, L. Du, P.-B. Guo, B. Zhu, J.H.T. Luong, Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode, J. Power Sources. 283 (2015) 46–53. https://doi.org/10.1016/j.jpowsour.2015.02.088.
[291] H.-Y. Tsai, C.-C. Wu, C.-Y. Lee, E.P. Shih, Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes, J. Power Sources. 194 (2009) 199–205. https://doi.org/10.1016/j.jpowsour.2009.05.018.
[292] C.-H. Hou, N.-L. Liu, H.-L. Hsu, W. Den, Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Sep. Purif. Technol. 130 (2014) 7–14. https://doi.org/10.1016/j.seppur.2014.04.004.
[293] R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application, Nano Energy. 11 (2015) 211–218. https://doi.org/10.1016/j.nanoen.2014.09.030.
[294] J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells, Biosens. Bioelectron. 72 (2015) 332–339. https://doi.org/10.1016/j.bios.2015.05.035.
[295] X.-W. Liu, X.-F. Sun, Y.-X. Huang, G.-P. Sheng, S.-G. Wang, H.-Q. Yu, Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell, Energy Environ. Sci. 4 (2011) 1422. https://doi.org/10.1039/c0ee00447b.
[296] A. Dass, A. Moridi, State of the art in directed energy deposition: From additive manufacturing to materials design, Coatings. 9 (2019) 1–26. https://doi.org/10.3390/COATINGS9070418.
[297] V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A review on powder bed fusion technology of metal additive manufacturing, Addit. Manuf. Handb. Prod. Dev. Def. Ind. (2017) 251–261. https://doi.org/10.1201/9781315119106.
[298] B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyp. J. 20 (2014) 192–204. https://doi.org/10.1108/RPJ-01-2013-0012.
[299] S. V Murphy, A. Atala, 3D bioprinting of tissues and organs, (n.d.). https://doi.org/10.1038/nbt.2958.
[300] G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister, W. V Giannobile, 3D-printed Bioresorbable Scaffold for Periodontal Repair, XX (2015) 1–5. https://doi.org/10.1177/0022034515588303.
[301] H. Philamore, J. Rossiter, P. Walters, J. Win, I. Ieropoulos, Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication, 289 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.113.
[302] X.Y. Tai, A. Zhakeyev, H. Wang, K. Jiao, H. Zhang, J. Xuan, Accelerating Fuel Cell Development with Additive Manufacturing Technologies : State of the Art , Opportunities and Challenges, (2019) 1–15. https://doi.org/10.1002/fuce.201900164.
[303] B. Bian, C. Wang, M. Hu, Z. Yang, X. Cai, D. Shi, J. Yang, Application of 3D printed porous copper anode in microbial fuel cells, Front. Energy Res. 6 (2018) 1–9. https://doi.org/10.3389/fenrg.2018.00050.
[304] F. Calignano, T. Tommasi, D. Manfredi, A. Chiolerio, Additive Manufacturing of a Microbial Fuel Cell — A detailed study, Nat. Publ. Gr. (2015) 1–10. https://doi.org/10.1038/srep17373.
[305] G. Papaharalabos, J. Greenman, C. Melhuish, I. Ieropoulos, A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment, Int. J. Hydrogen Energy. 40 (2015) 4263–4268. https://doi.org/10.1016/j.ijhydene.2015.01.117.
[306] E.C.S. Transactions, T.E. Society, Small Scale Microbial Fuel Cells and Different Ways of Reporting Output I. A. Ieropoulos, 28 (2010) 1–9.
[307] J. You, H. Fan, J. Winfield, I.A. Ieropoulos, Complete Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing, Molecules. 25 (2020) 3051. https://doi.org/10.3390/molecules25133051.
[308] D. Zawadzki, P. Pędziwiatr, K. Michalska, A NOVEL MICROBIAL FUEL CELL WITH EXCHANGABLE MEMBRANE – APPLICATION OF ADDITIVE MANUFACTURING TECHNOLOGY FOR DEVICE FABRICATION, (2018) 20–31.
[309] A.J. Slate, Optimisation of a Pseudomonas aeruginosa microbial fuel cell coupled with additive manufacturing of graphene electrodes to enhance power outputs, 2020.
[310] C.T. Wang, Y.S. Huang, T. Sangeetha, W.M. Yan, Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs), Appl. Energy. 209 (2018) 120–126. https://doi.org/10.1016/j.apenergy.2017.10.074.
[311] H. Long, T. Shi, H. Hu, S. Jiang, S. Xi, Z. Tang, Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries, Sci. Rep. 4 (2015) 7413. https://doi.org/10.1038/srep07413.
[312] A. Brière-Côté, L. Rivest, R. Maranzana, Comparing 3D CAD Models: Uses, Methods, Tools and Perspectives, Comput. Aided. Des. Appl. 9 (2012) 771–794. https://doi.org/10.3722/cadaps.2012.771-794.
[313] E.L. Gursoz, Y. Choi, F.B. Prinz, Boolean set operations on non-manifold boundary representation objects, Comput. Des. 23 (1991) 33–39. https://doi.org/10.1016/0010-4485(91)90079-C.
[314] I. Stroud, Boundary representation modelling techniques, Springer Science & Business Media, 2006.
[315] A.A.G. Requicha, H.B. Voelcker, Boolean Operations in Solid Modeling: Boundary Evaluation and Merging Algorithms, Proc. IEEE. 73 (1985) 30–44. https://doi.org/10.1109/PROC.1985.13108.
[316] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer New York, New York, NY, 2018. https://doi.org/10.1007/978-1-4939-6676-9.
[317] S. Rahmanian, A.R. Suraya, M.A. Shazed, R. Zahari, E.S. Zainudin, Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers, Mater. Des. 60 (2014) 34–40. https://doi.org/10.1016/j.matdes.2014.03.039.
[318] HP JET FUSION, (n.d.).
[319] M.E. Determinations, Mixing Efficiency Determinations for Continuous Flow Systems ’, (1959) 105–112.
[320] L.A. Melton, C.W. Lipp, R.W. Spradling, K.A. Paulson, Dismt - Determination of mixing time through color changes, Chem. Eng. Commun. 189 (2002) 322–338. https://doi.org/10.1080/00986440212077.
[321] C.D. Tsai, X. Lin, Experimental Study on Microfluidic Mixing with Different Zigzag Angles, (2019). https://doi.org/10.3390/mi10090583.
[322] Y.-C. Su, C.-C. Li, Computational fluid dynamics simulations and tests for improving industrial-grade gas mask canisters, Adv. Mech. Eng. 7 (2015) 168781401559629. https://doi.org/10.1177/1687814015596297.
[323] N.M.C. Martins, N.J.G. Carriço, H.M. Ramos, D.I.C. Covas, Velocity-distribution in pressurized pipe flow using CFD: Accuracy and mesh analysis, Comput. Fluids. 105 (2014) 218–230. https://doi.org/10.1016/j.compfluid.2014.09.031.
[324] S. Krishnan, S. V. Garimella, J.Y. Murthy, Simulation of thermal transport in open-cell metal foams: Effect of periodic unit-cell structure, J. Heat Transfer. 130 (2008). https://doi.org/10.1115/1.2789718.
[325] X. Jin, B. Shen, H. Yan, B. Sunden, G. Xie, Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores, Int. J. Heat Mass Transf. 127 (2018) 268–282. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.087.
[326] A.F.T. Guide, Ansys Fluent Theory Guide, ANSYS Inc., USA. 15317 (2013) 724–746.
[327] A. Jorio, R. Saito, Raman spectroscopy for carbon nanotube applications, J. Appl. Phys. 129 (2021) 021102. https://doi.org/10.1063/5.0030809.
[328] H. Hou, L. Li, P. De Figueiredo, A. Han, Biosensors and Bioelectronics Air-cathode microbial fuel cell array : A device for identifying and characterizing electrochemically active microbes, Biosens. Bioelectron. 26 (2011) 2680–2684. https://doi.org/10.1016/j.bios.2010.06.037.
[329] M.-L. Chen, W.-C. Oh, Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution, Nanoscale Res. Lett. 6 (2011) 398. https://doi.org/10.1186/1556-276X-6-398.
[330] V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater. 185 (2011) 17–23. https://doi.org/10.1016/j.jhazmat.2010.08.053.
[331] M.F. Umar, M. Rafatullah, S.Z. Abbas, M.N.M. Ibrahim, N. Ismail, Bioelectricity production and xylene biodegradation through double chamber benthic microbial fuel cells fed with sugarcane waste as a substrate, J. Hazard. Mater. 419 (2021) 126469. https://doi.org/10.1016/j.jhazmat.2021.126469.
[332] C.W. Marshall, H.D. May, Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica, Energy Environ. Sci. 2 (2009) 699. https://doi.org/10.1039/b823237g.
[333] U. Michaelidou, A. ter Heijne, G.J.W. Euverink, H.V.M. Hamelers, A.J.M. Stams, J.S. Geelhoed, Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell, Appl. Environ. Microbiol. 77 (2011) 1069–1075. https://doi.org/10.1128/AEM.02912-09.
[334] Q. Wu, S. Jiao, M. Ma, S. Peng, Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation, Environ. Sci. Pollut. Res. 27 (2020) 6749–6764. https://doi.org/10.1007/s11356-020-07745-0.
[335] D. Wu, F. Sun, F.J.D. Chua, Y. Zhou, Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm – Sulfamethoxazole, Chem. Eng. J. 384 (2020) 123238. https://doi.org/10.1016/j.cej.2019.123238.
[336] J. Sun, W. Xu, P. Yang, N. Li, Y. Yuan, H. Zhang, Y. Wang, X. Ning, Y. Zhang, K. Chang, Y. Peng, K. Chen, Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell, Chemosphere. 221 (2019) 21–29. https://doi.org/10.1016/j.chemosphere.2018.12.152.
[337] T. Zhu, Z. Su, W. Lai, Y. Zhang, Y. Liu, Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology, Sci. Total Environ. 776 (2021) 145906. https://doi.org/10.1016/j.scitotenv.2021.145906.
[338] Y. Zhou, N. Zhu, W. Guo, Y. Wang, X. Huang, P. Wu, Z. Dang, X. Zhang, J. Xian, Simultaneous electricity production and antibiotics removal by microbial fuel cells, J. Environ. Manage. 217 (2018) 565–572. https://doi.org/10.1016/j.jenvman.2018.04.013.
[339] A. Deeke, T.H.J.A. Sleutels, H.V.M. Hamelers, C.J.N. Buisman, Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells, Environ. Sci. Technol. 46 (2012) 3554–3560. https://doi.org/10.1021/es204126r.
[340] Y. Yuan, S. Zhou, Y. Liu, J. Tang, Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells, Environ. Sci. Technol. 47 (2013) 14525–14532. https://doi.org/10.1021/es404163g.
[341] X. Xie, M. Ye, L. Hu, N. Liu, J.R. Mcdonough, W. Chen, H.N. Alshareef, Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes, Energy Environ. Sci. (2012) 5265–5270. https://doi.org/10.1039/c1ee02122b.
[342] Z. He, J. Liu, Y. Qiao, C.M. Li, T.T.Y. Tan, Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell, Nano Lett. 12 (2012) 4738–4741. https://doi.org/10.1021/nl302175j.
[343] T. Hua, S. Li, F. Li, B.S. Ondon, Y. Liu, H. Wang, Degradation performance and microbial community analysis of microbial electrolysis cells for erythromycin wastewater treatment, Biochem. Eng. J. 146 (2019) 1–9. https://doi.org/10.1016/j.bej.2019.02.008.
[344] S. Zhang, H.-L. Song, X.-L. Yang, H. Li, Y.-W. Wang, A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes, Bioresour. Technol. 256 (2018) 224–231. https://doi.org/10.1016/j.biortech.2018.02.023.
[345] X. Cao, H. Song, C. Yu, X. Li, Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell, Bioresour. Technol. 189 (2015) 87–93. https://doi.org/10.1016/j.biortech.2015.03.148.
[346] A. Almatouq, A. Babatunde, Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors, Int. J. Environ. Res. Public Health. 13 (2016) 375. https://doi.org/10.3390/ijerph13040375.
[347] L. Wang, L. You, J. Zhang, T. Yang, W. Zhang, Z. Zhang, P. Liu, S. Wu, F. Zhao, J. Ma, Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes, J. Hazard. Mater. 360 (2018) 402–411. https://doi.org/10.1016/j.jhazmat.2018.08.021.
[348] J. Tang, Y. Yuan, T. Liu, S. Zhou, High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells, J. Power Sources. 274 (2015) 170–176. https://doi.org/10.1016/j.jpowsour.2014.10.035.
[349] S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors, ACS Nano. 4 (2010) 3889–3896. https://doi.org/10.1021/nn100681d.
[350] O. T. M., A. D. V., E. F. O., Effect of Methylene Blue Addition as a Redox Mediator on Performance of Microbial Fuel Cell Using Mud Sediment of River Ala, Int. J. Curr. Res. Rev. 11 (2019) 18–25. https://doi.org/10.31782/IJCRR.2019.11174.
[351] P. Zhang, C. Yang, Y. Xu, H. Li, W. Shi, X. Xie, M. Lu, L. Huang, W. Huang, Accelerating the startup of microbial fuel cells by facile microbial acclimation, Bioresour. Technol. Reports. 8 (2019) 100347. https://doi.org/10.1016/j.biteb.2019.100347.
[352] H. Fang, Y. Chen, L. Huang, G. He, Analysis of biofilm bacterial communities under different shear stresses using size-fractionated sediment, Sci. Rep. 7 (2017) 1299. https://doi.org/10.1038/s41598-017-01446-4.
[353] M. Lemos, F. Mergulhão, L. Melo, M. Simões, The effect of shear stress on the formation and removal of Bacillus cereus biofilms, Food Bioprod. Process. 93 (2015) 242–248. https://doi.org/10.1016/j.fbp.2014.09.005.
[354] Y. Liu, J.-H. Tay, Metabolic response of biofilm to shear stress in fixed-film culture, J. Appl. Microbiol. 90 (2001) 337–342. https://doi.org/10.1046/j.1365-2672.2001.01244.x.
[355] A. ROCHEX, J. GODON, N. BERNET, R. ESCUDIE, Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities, Water Res. 42 (2008) 4915–4922. https://doi.org/10.1016/j.watres.2008.09.015.
[356] A. Park, H.-H. Jeong, J. Lee, K.P. Kim, C.-S. Lee, Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel, BioChip J. 5 (2011) 236–241. https://doi.org/10.1007/s13206-011-5307-9.
[357] E.S. Gloag, S. Fabbri, D.J. Wozniak, P. Stoodley, Biofilm mechanics: Implications in infection and survival, Biofilm. 2 (2020) 100017. https://doi.org/10.1016/j.bioflm.2019.100017.
[358] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 73 (2013) 53–64. https://doi.org/10.1016/j.bej.2013.01.012.
[359] P. Thomen, J. Robert, A. Monmeyran, A.-F. Bitbol, C. Douarche, N. Henry, Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing, PLoS One. 12 (2017) e0175197. https://doi.org/10.1371/journal.pone.0175197.
[360] C. Coufort, N. Derlon, J. Ochoa-Chaves, A. Liné, E. Paul, Cohesion and detachment in biofilm systems for different electron acceptor and donors, Water Sci. Technol. 55 (2007) 421–428. https://doi.org/10.2166/wst.2007.286.
[361] H.T. Pham, N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, P. Van Oostveldt, K. Verbeken, K. Rabaey, W. Verstraete, High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell, Microb. Biotechnol. 1 (2008) 487–496. https://doi.org/10.1111/j.1751-7915.2008.00049.x.
[362] Y. Shen, M. Wang, I.S. Chang, H.Y. Ng, Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II), Bioresour. Technol. 136 (2013) 707–710. https://doi.org/10.1016/j.biortech.2013.02.069.
[363] L. Zhang, X. Zhu, J. Li, Q. Liao, D. Ye, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, J. Power Sources. 196 (2011) 6029–6035. https://doi.org/10.1016/j.jpowsour.2011.04.013.
[364] N. Eaktasang, C.S. Kang, S.J. Ryu, Y. Suma, H.S. Kim, Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell, Environ. Eng. Res. 18 (2013) 277–281. https://doi.org/10.4491/eer.2013.18.4.277.
[365] K. Raman, J.C.W. Lan, Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances, Appl. Energy. 100 (2012) 100–105. https://doi.org/10.1016/j.apenergy.2012.03.011.
[366] G. Baek, J. Kim, S.G. Shin, C. Lee, Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time, Appl. Microbiol. Biotechnol. 100 (2016) 927–937. https://doi.org/10.1007/s00253-015-7018-y.
[367] H. Moon, I.S. Chang, J.K. Jang, B.H. Kim, Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation, Biochem. Eng. J. 27 (2005) 59–65. https://doi.org/10.1016/j.bej.2005.02.010.
[368] K.A. Dwivedi, V. Kumar, C.-T. Wang, W.T. Chong, H.C. Ong, Design and feasibility study of novel swirler incorporated microbial fuel cell for enhancing power generation and domestic wastewater treatment, J. Clean. Prod. 337 (2022) 130382. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130382.
[369] T. Jafary, W.R.W. Daud, M. Ghasemi, B.H. Kim, M.H.A. Bakar, J.M. Jahim, M. Ismail, I. Satar, M.A. Kamaruzzaman, Assessment of recirculation batch mode of operation in bioelectrochemical system; a way forward for cleaner production of energy and waste treatment, J. Clean. Prod. 142 (2017) 2544–2555. https://doi.org/10.1016/j.jclepro.2016.11.022.
[370] B. Virdis, K. Rabaey, Z. Yuan, J. Keller, Microbial fuel cells for simultaneous carbon and nitrogen removal, Water Res. 42 (2008) 3013–3024. https://doi.org/10.1016/j.watres.2008.03.017.
[371] Y. Pan, T. Zhu, Z. He, Energy advantage of anode electrode rotation over anolyte recirculation for operating a tubular microbial fuel cell, Electrochem. Commun. 106 (2019) 106529. https://doi.org/10.1016/j.elecom.2019.106529.
[372] X. Jin, B. Shen, H. Yan, B. Sunden, G. Xie, Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores, Int. J. Heat Mass Transf. 127 (2018) 268–282. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.087.
[373] G. Yang, C. Hou, M. Zhao, W. Mao, Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels, Sci. Rep. 9 (2019) 3731. https://doi.org/10.1038/s41598-019-39704-2.
[374] Z. qin Qi, S. jie Fan, C. tsan Wang, Z. yang Hu, Mixing effect of biometric flow channel in microbial fuel cells, Appl. Energy. 100 (2012) 106–111. https://doi.org/10.1016/j.apenergy.2012.03.026. 

無法下載圖示 全文公開日期 2025/02/10 (校內網路)
全文公開日期 2025/02/10 (校外網路)
全文公開日期 2025/02/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE