簡易檢索 / 詳目顯示

研究生: 黃皓瓏
Hao Long Huang
論文名稱: 不同碳材添加MnO2觸媒對微生物燃料電池空氣陰極特性的影響研究
Effect of MnO2 Catalyst Added to Different Carbon Materials on Air Cathode Characteristics of Microbial Fuel Cells
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 林景崎
Lin Jing Chie
向四海
Su Hai Hsiang
王金燦
Chin Tsan Wang
林景崎
Lin Jing Chie
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 單室微生物燃料電池碳布改質二氧化錳發電
外文關鍵詞: single-chamber microbial fuel cell, carbon cloth modification, manganese dioxide, power generation
相關次數: 點閱:283下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今二氧化錳(MnO2)在化學反應中主要作為催化劑,如製造氧氣;或作為酸性溶液中的氧化劑,其特性有較大的孔隙度及較低的極化現象,在一定的空間內可以壓縮較多的二氧化錳且維持電極特性。然而,微型燃料電池因為電極表面積非常小,導致電力輸出不佳,在電極表面積接觸非常小之狀況下,可利用二氧化錳混合碳黑、奈米碳管與石墨烯等碳材來改善觸媒及空氣陰極的產電效益。
    本研究中,利用AutoCAD軟體繪製單室微生物燃料電池的設計圖,選用壓克力為外殼材料,以CNC傳統銑削方式製作微生物燃料電池,以改善之前林彥廷文獻中[1]所採用的3D列印技術中漏液及成本昂貴的問題。藉由磁石攪拌機混合二氧化錳與碳黑、奈米碳管與石墨稀等碳材,將混合液塗覆在碳布上並使用電化學儀器進行微生物燃料電池電壓量測與極化實驗。
    利用二氧化錳添加碳材改善觸媒及空氣陰極的功能,以期找出最佳開路電位值及最大功率密度值,預期達到最佳的產電效益。
    本研究成果顯示,在碳布上塗布二氧化錳得到最大的電流密度值0.523A/m2及最大功率密度值0.290W/m2。觸媒當中,以50%MnO2/CNT得到最佳效果,開路電位值提升至0.808V,最大功率密度提升至0.694W/m2。


    Nowadays, manganese dioxide (MnO2) is mainly used as a catalyst in chemical reactions, such as oxygen production; or as an oxidant in an acidic solution, its characteristics have large porosity and low polarization, and can be compressed in a certain space. More manganese powder has good electrode characteristics. However, micro fuel cells have poor surface area due to very small electrode surface area. Under the condition that the surface area of the electrode is very small, carbon dioxide such as carbon black, carbon nanotubes and graphene can be mixed to improve the catalyst. And the electricity production efficiency of the air cathode.
    In this study, the design of single-chamber microbial fuel cell was drawn by AutoCAD software, and the microbial fuel cell was fabricated by CNC traditional milling method using acrylic as the outer casing material to improve the 3D printing used in Lin Yanting's literature [1]. The problem is leakage and cost in the technology. The carbon dioxide, carbon black, carbon nanotubes and graphite thin carbon materials were mixed by a magnet mixer, and the mixture was coated on a carbon cloth and subjected to microbial fuel cell voltage measurement and polarization experiments using an electrochemical instrument.
    The use of manganese dioxide to add carbon materials to improve the function of the catalyst and air cathode, in order to find the best open circuit potential value and maximum power density value, is expected to achieve the best power generation benefits.
    The results of this study shows that the coating of manganese dioxide on carbon cloth gives the maximum current density value of 0.523 A/m2 and the maximum power density value of 0.290 W/m2. Among the catalysts, the best effect was obtained with 50% MnO2/CNT, the open circuit potential value was increased to 0.808 V, and the maximum power density was increased to 0.694 W/m2.
    Keywords: single-chamber microbial fuel cell, carbon cloth modification, manganese dioxide, power generation

    摘要 i Abstract iii 目錄 v 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 3 1.3.1不同處理方式改善碳布 3 1.3.2二氧化錳(MnO2)觸媒的影響 7 1.3.3單室微生物燃料電池之氧氣擴散層 10 1.3.4石墨碳材對MFC的影響 12 1.4文獻整理心得 16 1.5 實驗目的 18 第二章 微生物燃料電池組成與原理 19 2.1微生物燃料電池之組成 19 2.2 微生物燃料電池工作原理 22 2.3微生物燃料電池之性能 23 2.3.1理論電位 (Theoretical electric potential) 23 2.3.2極化曲線與功率曲線 25 2.4Batch type和Continuous type比較 26 第三章 材料實驗方法 28 3.1實驗流程 28 3.2 實驗藥品、材料 29 3.2.1藥品試劑 29 3.2.2碳材與二氧化錳 29 3.2.3電極 32 3.3實驗儀器 32 3.4微生物燃料電池設計圖與實體圖 34 3.5MnO2之觸媒製作 37 3.6空氣陰極之製作 39 第四章 結果與討論 45 4.1二氧化錳添加至空氣陰極之開路電位 45 4.1.1二氧化錳(MnO2)的空氣陰極MFC開路電位測試 46 4.2不同觸媒添加至空氣陰極之極化曲線和功率密度之測試 46 4.2.1二氧化錳(MnO2)的空氣陰極MFC的極化曲線和功率密度之測試 47 4.3不同觸媒之極化曲線及功率曲線之測試 48 4.3.1碳黑(XC-72)+不同wt%MnO2的觸媒的測試 48 4.3.2奈米碳管(CNT)+不同wt%MnO2的觸媒的測試 53 4.4.3石墨烯(Graphene)+不同wt%MnO2的觸媒的測試 57 4.3.4不同觸媒之電流密度及功率曲線比較 63 4.4內阻值 65 4.4.1塗布二氧化錳(MnO2)之碳布 (CC)的空氣陰極MFC的測試 67 4.4.2碳黑(XC-72)+不同wt%MnO2的觸媒的測試 68 4.4.3奈米碳管(CNT)+不同wt%MnO2的觸媒的測試 69 4.4.4石墨烯(CNT)+不同wt%MnO2的觸媒的測試 71 4.4.5內阻比較 72 4.4.6不同碳材/不同wt%MnO2之SEM圖 74 4.4.7陽極的化學需氧量 77 第五章 結論 78 第六章 未來與展望 80 參考文獻 81

    [1]林彥廷“B12/CNT觸媒與單室微生物燃料電池空氣陰極的製作及其特性分析”,國立台灣科技大學機械工程學系,2017年7月(未公開).
    [2]H.Cai, J.Wang, Y.Buand Q.Zhon“Treatment of carbon cloth anodes for improving power generation in a dual-chamber microbial fuel cell” J Chem Technol Biotechnol Vol.4, pp. 623–628 (2013).
    [3] Y.Feng, Q.Yanga, X.Wang, Bruce E. Logan“Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells”Journal of Power SourcesVol.7 pp. 1841–1844 (2010).
    [4]K.Zhu, Yu Wang, Joel A. Tang, Hailong Qiu, Xing Meng, Zhongmin Gao, Gang Chen,Yingjin Wei and Y.Gao“CIn situ growth of MnO2 nanosheets on activated carbon fibers: a low-cost electrode for high performance supercapacitors”RSC Advances,Vol.18 pp. 14819–14825(2016).
    [5] M.Lu, S.Kharkwal, H.N, S.Li“Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells” Biosensors and Bioelectronics Vol.7 pp. 4728–4732 (2011).
    [6] X.Zhang, W.He, W.Yang, J.Liu, Q.Wang, P.Liang, X.Huang and Bruce E. Logan“Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells” Environmental Science Vol. 2, pp. 266-273 (2016).
    [7] Yueping Ren, Danyun Pan, Xiufen Li,Fei Fu, Yanan Zhao and Xinhua Wang “Effect of polyaniline-graphene nanosheets modified cathode on the performance of sediment microbial fuel cell”J Chem Technol Biotechnol Vol. 10, pp. 1946–1950 (2013).
    [8]A.Valipour, S.Ayyaru, Y.Ahn“Application of graphene-based nanomaterials as novel cathode catalysts for improving power generation in single chamber microbial fuel cells” Journal of Power Sourcespp. 139–144(2013).
    [9]J.Hou, Z.Liu, P.Zhang“A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes”Journal of Power Sources Vol. 10pp. 548–556 (2016).
    [10] 布魯斯.洛根(Bruce E. Logan) 著,馮玉杰,王鑫等譯,“微生燃料電池 MICROBIAL FUEL CELLS”, 化學工業出版社, 2009年10月.
    [11]M. Chiao, K. Lam, and L. Lin, ”Micromachined microbial and photosynthetic fuel cells”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2547-2553(2006).
    [12]M.Chiao1, K.B.Lam and L.Lin”A microfluidic microbial fuel cell fabricated by soft lithography” Journal of Micromechanics and Microengineering,Vol. 10, pp. 5836-5840(2011).
    [13] N. Lewis,D. Nocera, ”Powering the planet : chemical challenges in solar energy utilization”, Proceedings of the National Academy of Sciences, Vol. 103, pp. 15729-15735(2006).
    [14] M. Hofmann, D. Nezich, A. Reina, and J. Kong, ” In-situ samplerotation as a tool to understand chemical vapor deposition growth oflong aligned carbon nanotubes”, Nano Letters, Vol. 8, pp4122–4127.(2008).
    [15]S.Cheng and W.Liu,”How to Make Cathodes with a Diffusion Layer for Single Chamber Microbial Fuel Cells ”, Electrochemistry Communications, Vol.8, pp.489-494(2006).
    [16]蘇羿勳“奈米材料對 3D 列印微型微生物燃料電池的影響”,國立台灣科技大學機械工程學系,2016年1月.
    [17]C. Siu, M. Chiao, ” A microfabricated PDMS microbial fuel cell”, Journal of Microelectromechanical Systems, Vol. 17, pp. 1329-1341(2009).
    [18] 胡子揚,「小型微生物燃料電池,碩士論文,國立宜蘭大學,宜蘭 (2011).
    [19]F. Qian, Z.He, Michael P. Thelen, Y.Li ”A microfluidic microbial fuel cell fabricated by soft lithography” Journal of Power Sources,Vol. 10, pp. 5836-5840(2011).
    [20]W. Yang and Bruce E Logan,” Engineering a membrane based air cathode for microbial fuel cells via hot pressing and using multi-catalyst layer stacking”, Water Res. Technol., 2016,2,, pp. 858-863 (2016).
    [21]S. Cheng , J. Wu“Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells” Vol.92, pp. 22-26(2013).
    [22]K. Rabaey and W. Verstraete” Microbial fuel cells: novel biotechnology for energy generation ” TRENDS in Biotechnology,Vol.23 pp. 291-298(2005).
    [23] Z. Du, H. Li, T. Gu”A state of the art review on microbial fuel cells-A promising technology for wastewater treatm” pp.464–482(2007).
    [24]N. Trung Trinh, J. Hyeok Park, and B.Woo Kim” Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens” Korean J. Chem. Eng., Vol.26, 748-753 (2009)

    QR CODE