簡易檢索 / 詳目顯示

研究生: 李維倫
Wei-Lun Lee
論文名稱: 使用雷射對316L不鏽鋼送線直接能量沉積為薄壁的可行性研究
Feasibility Study of Wire-feed Directed Energy Deposition of 316L Stainless Steel Thin-wall Using Laser
指導教授: 修芳仲
Fang-Jung Shiou
鍾俊輝
Chun-Hui chung
口試委員: 鍾俊輝
Chun-Hui chung
梁書豪
Shu-Hao Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 316L不鏽鋼線材金屬積層製造直接能量沉積
外文關鍵詞: 316L stainless steel wire, Metal material additive manufacturing, Directed Energy Deposition
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來積層製造的發展性愈來愈受到重視,使用不同材料進行積層製造的可行性也受到廣泛的研究,在金屬材料的積層製造中,以金屬粉末為原料的製程已經有較成熟的發展,而若是以金屬線材為積層材料,相比金屬粉末具有更好的材料使用率、較高的沉積速率及金屬線材更易獲得等優點,使線材製程在成本考量上具有競爭力。在金屬積層製造的製程中,若能了解它的沉積機制及使用的參數對沉積結果的影響,操作員即可藉由參數的調整達到需要的產品幾何尺寸。本研究以光纖雷射的雙光模組作為能量源,使用直接能量沉積(Directed Energy Deposition, DED)的技術,探討以直徑0.8 mm的316L不鏽鋼線材垂直送線至S45C板材上的沉積情形,分別以雷射點位置、雷射能量及床台進給為實驗參數,並測量沉積物的幾何尺寸以研究參數與沉積結果之關係,並根據結果設計多層沉積實驗,測量沉積後的硬度值及以熱影像儀觀察沉積過程的溫度變化。
    由實驗結果發現沉積方向雷射主要在基板上製造熔池,而遠離沉積方向雷射則是將線材加熱附著於基板上;使用較高的雷射能量會產生較高的沉積寬度,而降低床台進給則會使沉積高度提升;在硬度值的量測中發現在第一層的熔池處由於散熱能力快速,具有最高的硬度值,自第三層之後則會較穩定的維持在185 HV;以375Watt能量能夠使層與層間穩定的結合,得到薄壁結構。


    In recent years, additive manufacturing has developed rapidly, and the feasibility of using different materials for additive manufacturing has also been widely studied. In the form of metal material, the process of using metal powder is mature. Compared to the metal powder materials, metal wire take advantages of material utilization, higher deposition rate, and low cost due to drawing process. In the process of metal additive manufacturing, if we can understand the deposition mechanism and the relationship between the experimental parameters and the products, the operators can adjust the parameters to achieve the desired geometry. This research mainly discusses the deposition mechanism. Single-layer and the multi-layer deposition of 316L stainless steel were studied using the direct energy deposition technology to feed the wire into the molten pool and deposit it. Two laser spots, laser energy and bed feed are considered as experimental parameters. Thermal camera was utilized to record the temperature change of the deposition process. The geometric dimensions and the hardness value are measured after deposition.
    According to the results, the laser in the deposition direction mainly produced a molten pool on the substrate, while another laser melt the wire and deposit it. Using higher laser energy will produce a higher deposition width, and lowering the table feed will increase the deposition height. The highest hardness value will be found in the melt pool of the first layer because of the rapid heat dissipation capacity. The hardness will be stably maintained at 185 HV until the third layer. Using the 375 Watt energy parameter, the layers will be fused stably, resulting in a thin-walled structure.

    摘要 I Abstract II 目錄 III 表索引 V 圖索引 VI 第1章 緒論 1 1.1研究背景 1 1.2論文架構 2 第2章 文獻回顧 4 2.1 積層製造 4 2.2 金屬的積層製造 6 2.3 金屬積層製造的研究及應用 8 第3章 實驗規劃與設備介紹 13 3.1 實驗目的與規劃 13 3.2 實驗設備介紹 19 3.2.1 實驗機台 19 3.2.2 雷射能量源 21 3.2.3 實驗材料與送線機構 24 3.2.4 紅外線熱影像儀 25 3.2.5 保護氣體 26 3.2.6 實驗配置圖 26 3.2.7 品質檢驗 27 第4章 結果與討論 28 4.1 雷射點與沉積結果 28 4.2 單層沉積 34 (A) 雷射能量對沉積寬度 35 (B) 床台進給對沉積寬度 36 (C) 床台進給對沉積高度 37 (D) 高寬比 38 4.3 多層沉積 39 4.3.1 預備實驗 39 4.3.2 多層沉積結果 41 4.4 熱影像儀 46 4.5 硬度值 49 (A) 單層沉積 50 (B) 多層沉積 51 第5章 結論 55 5.1 結論 55 5.2 未來展望 57 參考文獻 57

    [1] ISO/ASTM Standard 52900 (2015) Standard Terminology for Additive Manufacturing-General Principles-Part 1: Terminology, ASTM, West Con-shohocken, PA.
    [2] Liu, Z., Zhang, H. C., Peng, S., Kim, H., Du, D., and Cong, W. (2019). Analytical modeling and experimental validation of powder stream distribution during direct energy deposition. Additive Manufacturing, 30, 100848.
    [3] Deckers, J., Vleugels, J., and Kruth, J. P. (2014). Additive manufacturing of ceramics: a review. Journal of Ceramic Science and Technology, 5(4), 245-260.
    [4] Gu, D., and Shen, Y. (2008). Direct laser sintered WC-10Co/Cu nanocomposites. Applied Surface Science, 254(13), 3971-3978.
    [5] Edwards, P., and Ramulu, M. (2014). Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science and Engineering: A, 598, 327-337.
    [6] Ding, D., Pan, Z., Cuiuri, D., and Li, H. (2015). Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1-4), 465-481.
    [7] Syed, W. U. H., Pinkerton, A. J., and Li, L. (2005). A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping. Applied surface science, 247(1-4), 268-276..
    [8] Bourell, D., Kruth, J. P., Leu, M., Levy, G., Rosen, D., Beese, A. M., and Clare, A. (2017). Materials for additive manufacturing. CIRP Annals, 66(2), 659-681.
    [9] Zhao, H., Zhang, G., Yin, Z., and Wu, L. (2011). A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. Journal of Materials Processing Technology, 211(3), 488-495.
    [10] Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., Li, M., and Zhang, H. (2018). Review on thermal analysis in laser-based additive manufacturing. Optics & Laser Technology, 106, 427-441.
    [11] Mok, S. H., Bi, G., Folkes, J., and Pashby, I. (2008). Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics. Surface and Coatings Technology, 202(16), 3933-3939.
    [12] Demir, A. G. (2018). Micro laser metal wire deposition for additive manufacturing of thin-walled structures. Optics and Lasers in Engineering, 100, 9-17.
    [13] Song, Y. A., Park, S., Choi, D., and Jee, H. (2005). 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. International Journal of Machine Tools and Manufacture, 45(9), 1057-1062.
    [14] Xiong, J., Li, Y., Li, R., and Yin, Z. (2018). Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. Journal of Materials Processing Technology, 252, 128-136.
    [15] 呂佳泓,使用雷射對316L不鏽鋼送線直接能量沉積的可行性研究,碩士論 文,國立臺灣科技大學,台北,台灣,2020。

    QR CODE