簡易檢索 / 詳目顯示

研究生: 謝旺成
Wang-Cheng Hsieh
論文名稱: 以熱蒸鍍法蒸鍍氧化鋅及氧化鋅混合一氧化矽應用於指紋顯影
Thermal evaporation of ZnO and mixture of ZnO and SiO for developing latent fingerprints
指導教授: 周賢鎧
Shyankay Jou
口試委員: 郭鴻飛
Hungfei Kuo
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 指紋顯影氧化鋅一氧化矽熱蒸鍍光激發發光
外文關鍵詞: Development of latent fingerprint, Zinc oxide, Silicon monoxide, Thermal evaporation, Photoluminescence
相關次數: 點閱:216下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用熱蒸鍍(Thermal evaporation)系統,蒸鍍氧化物粉末來顯影指紋,
並使用簡便的製程,在不經過退火之情況下,達到指紋顯影及薄膜發光之特性,
使其可用於鑑識科學。
蒸鍍氧化鋅、氫氧化鋅、硝酸鋅三種粉末,都可以清楚的顯影出指紋紋路,
利用X 光繞射儀分析,發現薄膜都為金屬鋅之結構,經過光激發發光光譜儀分
析,薄膜都沒有產生任何的發光波段。實驗中也利用RF 氧氣電漿處理此類薄膜,
但都無法使其氧化達到發光之效果。蒸鍍非結晶一氧化矽粉末製成之薄膜,只有
微弱的發光強度,但放置於大氣下八個月後,經光激發發光光譜儀分析,發現薄
膜發光強度提高。蒸鍍氧化鋅與一氧化鋅混合之粉末製得之薄膜,在剛沉積出時
薄膜有發光波段,此發光可能為與矽鍵結之兩個氧互相鍵結(dioxasilirane)及具有
兩個孤對電子的矽(silylene)之兩種缺陷造成之發光。
最後將具有發光特性之薄膜,蒸鍍在不同材料上,觀察其發光效果,並利用
254 nm 之紫外燈激發,把發光之指紋影像拍下,以將此技術應用於鑑識科學當
中。


In this research, development of latent fingerprint can be achieved by thermal
evaporation using various oxide sources and simple procedures without annealing.
Results shows that latent fingerprints can be clearly developed and behave
luminescence-emitting property in specific condition, which is beneficial to forensic science.
Latent fingerprint can be successfully developed using ZnO, Zn(OH)2, and
Zn(NO3)2, respectively. Films exhibit metallic Zn structure by XRD and showed no luminescence-emitting property by PL measurement, even proceeded by oxygen
plasma. However, by changing evaporation source to amorphous SiO powder showed
slightly luminescence-emitting. Furthermore, light emitting intensity became larger when films were stored in the air for 8 months. Latent fingerprint developed by source mixed of ZnO and SiO powders showed considerable luminescence intensity when firstly evaporated, which is possibly caused by defects of dioxasilirane and silylene.
Finally, various of objects were selected to try to achieve development of latent fingerprint, and investigate the luminescence-emitting property as well as take pictures after excited by UV light. Results could be applied to forensic science.

摘要................................................................................................................................ I Abstract ......................................................................................................................... II 目錄.............................................................................................................................. III 表目錄........................................................................................................................... V 圖目錄.......................................................................................................................... VI 第一章 前言................................................................................................................ 1 第二章 文獻回顧........................................................................................................ 2 2.1 指紋特性及顯影技術................................................................................... 2 2.2 氧化鋅薄膜................................................................................................... 5 2.2.1 氧化鋅簡介........................................................................................ 5 2.2.2 氧化鋅薄膜薄膜發光機制................................................................ 7 2.3 真空金屬沉積(Vacuum Metal Deposition, VMD) ..................................... 10 2.3.1 Au/Zn deposition ............................................................................. 10 2.3.2 ZnO deposition................................................................................. 13 2.3.3 ZnO composite films........................................................................ 19 2.3.4 Amorphous SiO2 and ZnO+SiO2 film ............................................. 29 第三章 實驗步驟與方法.......................................................................................... 35 3.1 實驗用材料與規格..................................................................................... 35 3.2 實驗步驟..................................................................................................... 36 3.2.1 實驗流程.......................................................................................... 36 3.2.2 Au/Zn 薄膜之製備 .......................................................................... 38 3.2.3 蒸鍍ZnO 粉末之步驟 .................................................................... 39 3.2.4 蒸鍍Zn(OH)2、Zn(NO3)2、Zn(CH3COO)2 粉末之步驟 .............. 40 3.2.5 蒸鍍SiO 粉末及ZnO+SiO 粉末之步驟 ....................................... 41 IV 3.3 實驗儀器與裝置......................................................................................... 44 3.3.1 熱蒸鍍系統(Thermal evaporation) ................................................. 44 3.3.2 RF 氧氣電漿氧化系統(RF Oxygen Plasma Oxidation System) .... 45 3.3.3 石英管爐系統(Furnace System) ..................................................... 46 3.3.4 指紋拍攝.......................................................................................... 46 3.4 薄膜分析與鑑定......................................................................................... 48 3.4.1 表面輪廓儀(α-Step) ........................................................................ 48 3.4.2 X 光繞射儀(X-Ray Diffractometer, XRD) ..................................... 48 3.4.3 能量散射光譜儀(Energy Dispersive Spectrometers, EDS) ............ 49 3.4.4 光激發發光光譜儀(Photoluminescence, PL) ................................. 49 3.4.5 化學分析影像能譜儀(ESCA) ......................................................... 50 第四章 結果與討論.................................................................................................. 51 4.1 蒸鍍Au/Zn 金屬與ZnO 粉末顯影指紋之比較 ....................................... 51 4.1.1 時效性比較...................................................................................... 51 4.1.2 蒸鍍ZnO 粉末之薄膜XRD 分析 .................................................. 52 4.1.3 蒸鍍ZnO 粉末之薄膜PL 分析...................................................... 54 4.2 改善ZnO 薄膜缺氧之情形 ....................................................................... 55 4.2.1 通入空氣蒸鍍ZnO 粉末 ................................................................ 55 4.2.2 RF 氧氣電漿處理缺氧之薄膜 ........................................................ 57 4.3 蒸鍍Zn(OH)2、Zn(NO3)2、Zn(CH3COO)2 粉末 ..................................... 60 4.4 蒸鍍SiO 粉末及ZnO + SiO 粉末 ............................................................ 65 4.4.1 蒸鍍SiO 粉末 ................................................................................. 65 4.4.2 蒸鍍ZnO+SiO 粉末 ........................................................................ 72 4.5 蒸鍍SiO 及ZnO + SiO 粉末顯影指紋之影相 ........................................ 82 第五章 結論.............................................................................................................. 93 參考文獻...................................................................................................................... 95

[1] N. Jones, M. Stoilovic, C. Lennard, C. Roux, “Vacuum metal deposition:
factors affecting normal and reverse development of latent fingerprints on
polyethylene substrates”, Forensic Science International, vol. 115, pp.
73-88, 2001.
[2] 翁照琪, 「赴美研習刑事鑑識技能暨參訪美國警察機構心得報告」,
彰化縣警察局鑑識課, 民國99 年。
[3] E. Stauffer, A. Becue, K. V. Singh, K. R. Thampi, C. Champod, P.
Margot, “Single-metal deposition (SMD) as a latent fingermark
enhancement technique: An alternative to multimetal deposition (MMD)”,
Forensic Science International, vol. 168, pp. e5–e9, 2007.
[4] T. Kent, G.L. Thomas, T.E. Reynoldson, H.W. East, “A vacuum coating
technique for the development of latent fingerprints on polythene”, J. Forensic Sci. Soc. 16 (1976) 93–100.
[5] 郭益男, 「反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究」,
中山大學電機工程學系碩士論文, 民國93 年。
[6] W. Water and S. Y. Chu, “Physical and structural properties of ZnO
sputtered films”, Mater. Letters, vol. 55, pp. 67-72, 2002.
[7] S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition
annealing on the properties of ZnO films prepared by RF magnetron
sputtering”, Journal of the European Ceramic Society, vol. 23, pp.
1593-1598, 2003.
[8] 水瑞鐏, 「氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用」,
國立成功大學電機工程學系博士論文, 民國91 年。
[9] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si
junction solar cells”, Thin Solid films, vol. 354, pp. 227-231, 1999.
[10] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances
presented by zinc oxide thin films deposited by r.f. magnetron
sputtering”, Vacuum, vol. 64, pp. 293-297, 2002.
[11] L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang and X. Xu, “The photoand
electro-luminescence properties of ZnO:Zn thin film”, Displays, vol.
21, pp. 147-149, 2000.
[12] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T.
Williams, “Production and properties of p-n junctions in reactively
sputtered ZnO”, Physica B, vol. 308-310, pp. 1197-1200, 2001.
[13] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical
and optical properties of ZnO:Al films prepared by RF reactive
sputtering”, Thin Solid Films, vol. 199, pp. 223-230, 1991.
[14] M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the
morphology and electrical properties of ZnO/In Films”, Thin Solid
Films, vol. 410, pp. 8-13, 2002.
[15] 王敬龍, 「以溶膠-凝膠法製備ITO 薄膜之製程研究」, 國立成功大
學材料科學及工程研究所碩士論文, 民國85 年。
[16] 許國銓, 「科技玻璃-高性能透明導電膜玻璃」, 材料與社會, 1993 年,
84 期。
[17] W. Water and S. Y. Chu, “Physical and structural properties of ZnO
sputtered films,” Materials Letters, vol. 55, pp. 67-72, 2002.
[18] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu,
“Luminescence properties of ZnO films annealed in growth ambient and
oxygen,” Journal of Crystal Growth, vol. 263, pp. 269-272, 2004.
[19] Z. W. Li, W. Gao, “Growth of zinc oxide thin films and nanostructures
by wet oxidation”, Thin Solid Films, vol. 515, pp. 3323-3329, 2007.
[20] T. Kent, “Recent research on superglue, vacuum metal deposition and
fluorescence examination”, Police Scientific Development Branch, pp.
1-4, July 1990.
[21] A. H. Misner, “Latent fingerprint detection on low density polyethylene
comparing vacuum metal deposition to cyanoacrylate fuming and
fluorescence”, Journal of Forensic Identification, vol. 42, pp.26-33,
1992.
[22] N. Masters, J. DeHaan, “Vacuum metal deposition (VMD) and
cyanoacrylate detection of older latent prints”, Journal of Forensic
Identification, vol. 46, pp. 32-45, 1996.
[23] N. Jones, M. Stoilovic, C. Lennard, C. Roux, “Vacuum metal deposition:
factors affecting normal and reverse development of latent fingerprints
on polyethylene surfaces”, Forensic Science International, vol. 115, pp.
73-88, 2001.
[24] N. Jones, D. Mansour, M. Stoilovic, C. Lennard, C. Roux, “The
influence of polymer type, print donor and age on the quality of
fingerprints developed on plastic substrates using vacuum metal
deposition”, Forensic Science International, vol. 124, pp. 167-177, 2001.
[25] D. Philipson, S. Bleay, “Alternative metal processes for vacuum metal
deposition”, Journal of Forensic Identification, vol. 57, pp. 252-272,
2007.
[26] A. Gunaratne, C. Knaggs, D. Stansbury, “Vacuum deposition: comparing
conventional gold/zinc VMD to aluminum VMD”, Ident. Can. vol. 30
pp. 40-62, 2007.
[27] S. K. Jou, I. H. Yu, C. M. Chen, K. C. Wang, L. J. Pang, J. S. Liao,
“Development of latent fingerprint by ZnO deposition”, Forensic
Science International vol. 207, pp. 14-18, 2010.
[28] P. Nunes, D. Costa, E. Fortunato, R. Martins, “Performances presented
by zinc oxide thin films deposited by r.f. magnetron sputtering”,
Vacuum, vol. 64, pp.293-297, 2002.
[29] K. H. Kim, K. C. Park, D. Y. MA, “Structural, electrical and optical
properties of aluminum doped zinc oxide films prepared by radio
frequency magnetron sputtering”,Applied Physics Letters, vol. 81, pp.
7764-7772, 1997.
[30] P. M. Ratheesh Kumar, C. Sudha Kartha, K. P. Vijayakumar, F. Singh,
D. K. Avasthi, “Effect of fluorine doping on structural, electrical and
optical properties of ZnO thin films”, Materials Science and Engineering,
vol. 117, pp. 307-312, 2005.
[31] S. A. Studenikin, N. Golego, M. Cocivera, “Fabrication of green and
orange photoluminescent, undoped ZnO films using spray pyrolysis”,
Applied Physics Letters, vol. 4, pp. 2287-2295, 1998.
[32] S. Bethke, H. Pan, B. Wesseis, “Luminescence of heteroepitaxial zinc
oxide”, Applied Physics Letters, vol. 52, pp. 138-140, 1988.
[33] N. K. Park, G. B. Han, J. D. Lee, S. O. Ryu, T. J. Lee, W. C. Chang, C. H.
Chang, “The growth of ZnO nano-wire by a thermal evaporation method
with very small amount of oxygen”, Current Applied Physics, vol. 6S1
pp. e176-e181, 2006.
[34] N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M. S. Aida,
M. Jacquet, “Influence of annealing temperature on the properties of
ZnO thin films deposited by thermal evaporation”, Applied Surface
Science, vol. 252, pp. 5594-5597, 2006.
[35] B. V. L’vov, V. L. Ugolkov, F. F. Grekov, “Kinetics and mechanism of
free-surface vaporization of zinc, cadmium and mercury oxides analyzed
by the third-law method”,Thermochimica Acta, vol. 411, pp. 187-193,
2004.
[36] H. Z. Wu, K. M. He, D. J. Qiu, D. M. Huang, “Low-temperature epitaxy
of ZnO films on Si(0 0 1) and silica by reactive e-beam evaporation”,
Journal of Crystal Growthvol. 217, pp. 131-137, 2000.
[37] R. Al Asmar, J. P. Atanas, M. Ajaka, Y. Zaatar, G. Ferblantier, J. L.
Sauvajol, J. Jabbour, S. Juillaget, A. Foucaran, “Characterization and
Raman investigations on high-quality ZnO thin films fabricated by
reactive electron beam evaporation technique”, Journal of Crystal
Growth, vol. 279, pp. 394-402, 2005.
[38] S. Yong. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative
Structure and Optical Properties of Ga-, In-, and Sn- Doped ZnO
Nanowires Synthesized via Thermal Evaporation”, Journal of Physical
Chemistry B, vol. 109, pp. 2526-2531, 2005.
[39] J. G. Ma, Y. C. Liu, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W.
Fan, “Formation and luminescence of ZnO nanoparticles embedded in
MgO films”, Physical Review B, vol. 71, pp. 125430, 2005.
[40] D. J. Qiu, H. Z. Wu, A. M. Feng, Y. F. Lao, N. B. Chen, T. N. Xu,
“Annealing effects on the microstructure and photoluminescence
properties of Ni-doped ZnO films”, Applied Surface Science, vol. 222
pp. 263-268, 2004.
[41] S. M. Zhou, X. H. Zhang, X. M. Meng, K. Zou, S. K. Wu, S. T. Lee,
“The fabrication and optical properties of highly crystalline ultra-long
Cu-doped ZnO nanowires”, Nanotechnology, vol. 15, pp. 1152-1155,
2004.
[42] J. T. Luo, X. Y. Zhu, G. Chen, F. Zeng, F. Pan, “The electrical, optical
and magnetic properties of Si-doped ZnO films”, Applied Surface
Science, vol. 2, pp. 93-97, 2011.
[43] Shabnam, C. R. Kant, P. Arun, “Controlling the photo- luminescence of
ZnO:Si nano-composite films by heat-treatment”, Materials Research
Bulletin, vol. 45, pp. 1368-1374, 2010.
[44] A. Aboshi, N. Kurumoto, T. Yamada, “Influence of Thermal Treatments
on the Photoluminescence Characteristics of Nanometer-Sized
Amorphous Silica Particles”, Journal of Physical Chemistry C ,vol. 111,
pp. 8483-8488, 2007.
[45] B. A. Morrow, “Sillcon-29 Cross-Polarization/Magic Angle Spinning
NMR Evidence for Geminal Silanols on Vacuum-Activated Aersoll
Silica”, Journal of Physical Chemistry, vol. 92, pp. 5569-5571, 1988.
[46] Y. Y. Peng, T. E. Hsieh, C. H. Hsu, “White-light emitting ZnO-SiO2
nanocomposite thin films prepared by the target-attached sputtering method”,
Institute of Physics Nanotechnology, vol. 17, pp. 174-180, 2006.
[47] 詹益明, 「氧化亞銅-氧化鋅異質接面太陽能電池之研製」, 台灣科
技大學工程技術研究所碩士論文, 民國99 年。
[48] 吳泰伯, 許樹恩, 「X 光繞射原理與材料結構分析」, 中國材料科學
學會, 民國95 年9 月。
[49] M. Barbara, G. Ryszard, M. Andrzej, W. Małgorzata, O. Piotr, “Mass
spectral studies on the mechanism of thermal decomposition of
Zn(NO3)2·nH2O”, Thermochimica Acta, vol. 404, pp. 125-132, 2003.
[50] C. C. Lin, Y. Y. Li, “Synthesis of ZnO nanowires by thermal
decomposition of zinc acetate dehydrate”, Materials Chemistry and
Physics, vol. 113, pp. 334-337, 2009.

QR CODE