簡易檢索 / 詳目顯示

研究生: 許致賓
Chih-Pin Hsu
論文名稱: 不需電感電流偵測之功因校正電路研製
Design and Implementation of Inductor Current Sensorless Power Factor Corrected Circuit
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
廖聰明
徐國鎧
劉益華
劉添華
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 158
中文關鍵詞: 功因校正器電流諧波抑制預測型控制器不需電感電流偵測
外文關鍵詞: power factor correction, current harmonics elimination, predictive controller, inductor-current sensorless
相關次數: 點閱:195下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討新型單相升壓型功因校正電路的研製,一般的功因校正器需要三個偵測電路,分別為:輸入電壓偵測電路、電感電流偵測電路、及輸出電壓偵測電路,導致電路成本高、且體積大。為了改善上述缺點,本文提出兩種新型不需電感電流偵測元件的功因校正電路,方法一使用電感電壓估測法達成功因校正,將輸入電流諧波由(無控制下)100%降至(控制後)11.1%,方法二使用電感電流估測法達成功因校正,將輸入電流諧波由(無控制下)100%降至(控制後)8.2%。
為了改善動態響應,文中探討輸出電壓預測型控制器與電感電流預測型控制器,分別改善輸出電壓暫態響應以及電感電流追蹤能力。
本文使用德州儀器所生產的數位訊號處理器TMS320F2808作為功因校正電路的控制核心,配合周邊硬體電路達成相關的控制。文中研製400瓦特,50kHz切換頻率的單相交流110伏特/直流300伏特功因校正器。相關實驗結果,說明本文所提方法的可行性及正確性。


This thesis investigates the implementation of a new single-phase power factor corrected circuit. Generally speaking, a normal power factor correction (PFC) requires three main sensing circuits: the input-voltage sensing circuit, the inductor-current sensing circuit, and the output-voltage sensing circuit. As a result, the PFC circuit has high cost and large volume. To solve these disadvantages, this thesis proposes two new-type inductor current sensorless methods. Method 1 uses the inductor voltage estimation to reach PFC control, which can reduce the input current harmonics from (uncontrolled) 100% to (controlled) 11.1%. In addition, method 2 uses the inductor current estimation to reach PFC control, which can reduce the input current harmonics from (uncontrolled) 100% to (controlled) 8.2%.
To improve the dynamic responses, in this thesis, the output voltage predictive controller and the inductor current predictive current controller are proposed to individually improve output voltage transient responses and the inductor current tracking ability.
A digital signal processor, type TMS320F2808, is used as the control centers of the PFC circuit and executes the related control algorithm to control the hardware circuit. A 400 watt, 50kHz switching frequency, single-phase AC 110V/DC 300V PFC circuit has been implemented. The measured results validate the feasibility and correctness of the proposed methods.

中文摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XII 符號索引 XIII 第一章 緒論 1 1.1背景 1 1.2文獻回顧 2 1.3論文大綱 5 第二章 交流/直流轉換器功因校正器電路介紹 6 2.1簡介 6 2.1.1功因與諧波的定義 6 2.2電感電流偵測元件控制方法 12 2.2.1連續導通模式 12 2.3不需電感電流偵測元件控制方法 17 2.3.1不需電感電流及輸出電壓偵測元件控制方法 18 2.3.2不需電感電流但需要輸出電壓偵測元件控制法 19 第三章 數學模型 23 3.1 簡介 23 3.2 功因校正電路數學模型 23 3.3 狀態估測方法 34 3.3.1電感狀態估測方法 34 3.4.2輸出電壓估測方法 47 第四章 預測型控制器設計 49 4.1簡介 49 4.2輸出電壓迴路預測型控制器設計 51 4.3電感電流迴路預測型控制器 58 第五章 系統研製 62 5.1簡介 62 5.2功率級電路設計 65 5.2.1儲能電感設計 65 5.2.2輸出電容設計 67 5.2.3功率開關、二極體和整流器的選擇 68 5.3偵測電路與驅動電路 71 5.4數位訊號處器與軟體程式設計 75 5.4.1數位訊號處理器 75 5.4.2軟體程式 78 第六章 實測 85 6.1簡介 85 6.2實測結果 85 第七章 結論與未來研究方向 127 參考文獻 129 作者簡介 136  

[1] A. Prodic, J. Chen, D. Maksimovic, and W. Erickson, “Self-Tuning Digitally Controlled Low-Harmonic Rectifier Having Fast Dynamic Response,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 420-428, January 2003.
[2] J. Sun, “Input Impedance Analysis of Single-Phase PFC Converter,” IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 308-314, March 2005.
[3] K. D. Gusseme, W. R. Ryckaert, D. M. Van de Sype, J. A. Ghijselen, J. A. Melkebeek, and L. Vandevelde “A Boost PFC Converter With Programmable Harmonic Resistance,” IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 742-750, May/June 2007.
[4] K. N. Sakthivel, S. K. Das, and K. R. Kini, “Importance of Quality AC Power Distortion and Understanding of EMC Standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11,” IEEE ICEMIC-2003, pp. 423-430, December 2003.
[5] A. Fernandez, J. Sebastian, M. M. Hernando, and J. Garcia, “Dynamic Limits of a Power Factor Preregulator,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 77-87, February 2005.
[6] S. Basu, and M. H. J. Boolen, “A Novel Common Power Factor Correction Scheme for Homes and Offices,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 2257-2263, July 2005.
[7] S. Kim, and P. N. Enjeti, “Control of Multiple Single Phase PFC Modules with a Single Low-Cost DSP,” IEEE Transactions on Industry Applications, vol. 39, pp. 1379-1385, September/October 2003.
[8] L. Roggia, J. E. Baggio, and J. R. Pinheiro, “Comparison among Digital Current Controllers applied to Power Factor Correction Boost Converters,” IEEE Energy Conversion Congress and Exposition, vol. 6, pp. 2965-2971, September 2009.
[9] F. Z. Chen and D. Maksimovic, “Digital Control for Improved Efficiency and Reduced Harmonic Distortion Over Wide Load Range in Boost PFC Rectifiers,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2683-2691, October 2010.
[10] N. Yadaiah, A. S. Kumar, and Y. M. Reddy “DSP Based Control of Constant Frequency and Average Current Mode of Boost Converter for Power Factor Correction(PFC),” IEEE APCET-2012, pp. 1-6, August 2012.
[11] R. B. Ridley, “Secondary LC Filter Analysis and Design Techniques for Current-Mode-Controlled Converters,” IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 499-507, October 1998.
[12] V. Vorperian and R. B. Ridley,“A Simple Scheme for Unity Power-Factor Rectification for High Frenquency AC Bus, ” IEEE Transactions on Power Electronics, vol. 5, no. 1, pp. 77-87, January 1990.
[13] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input Filter for Power Factor Correction Circuits,” IEEE Transactions on Power Electronics, vol. 11, no.1, pp. 199-205, January 1995.
[14] D. F. Weng and S. Yuvarajan, “Constant-Switching-Frequency AC-DC Converter Using Second-Harmonic-Injected PWM,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 115-121, January 1996.
[15] E. Dallago, M. Passoni, G. Sassone, and G. Venchi, “Novel Current Transducer in a Single-Phase Active Power Factor Correction System,” IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 529-535, May 2000.
[16] M. M. Jovanovic and Y. J. Jang, “State-of-the-Art, Single-Phase, Active Power-Factor-Correction Techniques for High-Power Applications,” IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 701-708, June 2005.
[17] G. Moschopoulos and P. Jain, “Single-Phase Single-Stage Power-Factor-Corrected Converter Topologies,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 23-35, February 2005.
[18] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single Phase Power Factor Correction: A Survey,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 749-755, May 2003.
[19] W. M. Lin, H. X. Chen, and Y. C. Fang, “A Single-Stage PFC by Integrating quasi-Bridgeless Boost and LLC Converter,” IEEE ITEC-2018, October 2018.
[20] B. Poorali, and E. Adib, “Analysis of the Integrated SEPIC-Flyback Converter as a Single-Stage Single-Switch Power-Factor-Correction,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3562-3570, June 2016.
[21] H. J. Chiu, Y. C. Lee, S. J. Cheng, Y. C. Yan, C. Y. Lin, T. H. Wang, and S. C. Mou, “A Single-Stage Soft-Switching Converter for Power-Factor-Correction Applications,“ IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2187-2190, June 2010.
[22] A. Abasian, H. Farzanehfard, and S. A. Hashemi, “A Single-Stage Single-Switch Soft-Switching Boost-Flyback PFC Converter,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9806-9813, October 2019.
[23] Y. Wang, J. Huang, W. Wang, and D. Xu, “A Single-Stage Single-Switch LED Driver Based on Class-E Converter,” IEEE Transactions on Industrial Applications, vol. 52, no. 3, pp. 2618-2626, May/June 2016.
[24] L. Huber, L. Gang, and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Buck PFC Front End,” IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 85-94, January 2010.
[25] T. Bang, and J. W. Park, “Development of a ZVT-PWM Buck Cascaded Buck-Boost PFC Converter of 2KW With the Widest Range of Input Voltage,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2090-2099, March 2018.
[26] B. Zhao, A. Abramovitz, and K. Smedley, “Family of Bridgeless Buck-Boost PFC Rectifiers,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6524-6527, December 2015.
[27] K. Yao, C. Wu, J. Chen, J. Yang, J. Li, Z. Jin, S. Wang, R. Yang, L. Liu, Y. Gao, and Z. Wang, “A Scheme to Improve Power Factor and Dynamic Response Performance for CRM/DCM Buck-Buck/Boost PFC Converter,” IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1828-1843, February 2021.
[28] M. O. Badawy, Y. Sozer, and J. A. D. A. Garcia, “A Novel Control for a Cascaded Buck-Boost PFC Converter Operating in Discontinuous Capacitor Voltage Mode,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4198-4210, July 2016.
[29] M. Mahmoodsaleh, and E. Adib, “Soft-Switching Bridgeless Buck-Boost PFC Converter Using Single Magnetic Core,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5704-5711, July 2021.
[30] C. Y. Li, N. C. Chao, and H. C, Chen, “Design and Implementation of Four-Switch Current Sensorless Control for Three-Phase PFC Converter,” IEEE Transactions on Industry Electronics, vol. 67, no. 4, pp. 3307-3312, April 2020.
[31] H. C. Chen, C. Y. Lu, G. T. Li, and W. C. Chen, “Digital Current Sensorless Control for Dual-Boost Half-Bridge PFC Converter With Natural Capacitor Voltage Balancing,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4074-4083, May 2017.
[32] T. Ohnishi, and M. Hojo, “DC Voltage Sensorless Single-Phase PFC Converter,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 404-410, March 2004.
[33] H. S. Athab, “Single-Phase Single-Switch Boost PFC Regulator with Low Total Harmonic Distortion and Feedforward Input Voltage,” IEEE International Conference on Power and Energy, pp. 1118-1123, December 2008.
[34] F. Lopez, V. M. Lopez-Martin, F. J. Azcondo, L. Corradini, and A. Pigazo, “Current-Sensorless Power Factor Correction With Predictive Controllers,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 2, pp. 891-900, June 2019.
[35] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3782-3794, August 2012.
[36] Y. J. Choi, T. J. Kim, and R. Y. Kim, “An Active Partial Method in Tertiary Loop for a High-Efficiency Predictive Current-Mode Control PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7818-7828, October 2018.
[37] J. Wang, H. Eto, and F. Kurokawa, “Optimal Zero-Voltage-Switching Method and Variable on-Time Control for Predictive Boundary Conduction Mode Boost PFC Converter,” IEEE Transactions on Industrial Applications, vol. 56, no. 1, pp. 527-540, January/February 2020.
[38] J. H. Park, D. J. Kim, and K. B. Lee, “Predictive Control Algorithm Including Conduction-Mode Detection for PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5900-5911, September 2016.
[39] W. Zhang, G. Feng, Y. F. Liu, and B. Wu, “A Digital Power Factor Correction (PFC) Control Strategy Optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, November 2004.
[40] H. S. Nair, and N. Lakshminarasamma, “A Computationally Simple Predictive CCM Average Current Controller With Nearly Zero Tracking Error for Boost PFC Converter,” IEEE Transactions on Industrial Applications, vol. 56, no. 5, pp. 5083-5094, September /October 2020.
[41] M. Lee, and J. S. Lai, “Spread-Spectrum Frequency Modulation with Adaptive Three-Level Current Scheme to Improve EMI and Efficiency of Three-Level Boost DCM PFC,” IEEE Transactions on Power Electronics, vol. 36, no. 3, pp. 2476-2480, March 2021.
[42] S. F. Lim, and A. M. Khambadkone, “A Simple Digital DCM Control Scheme for Boost PFC Operating in Both CCM and DCM,” IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1802-1812, July/August 2011.
[43] A. A. D. M. Bento, and E. R. C. D. Silva, “Hybrid One-Cycle Controller for Boost PFC Rectifier,” IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 268-277, January/February 2009.

QR CODE