簡易檢索 / 詳目顯示

研究生: 洪翊鈞
Yi-chun Hung
論文名稱: 中底後足內側楔型鞋墊設計:下肢生物力學於走路時之研究
The design of rearfoot midsole with medial wedge: A study of lower extremity biomechanics during walking.
指導教授: 許維君
Wei-chun Hsu
口試委員: 相子元
Tzyy-yuang Shiang
蔡鴻文
Hon-wen Tsai
陳顥齡
Hao-ling Chen
陳麗妃
Li-fei Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 楔型鞋墊生物力學肌電步態分析
外文關鍵詞: Rearfoot wedge, biomechanics, EMG, gait analysis
相關次數: 點閱:296下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為健康年輕人穿著新型後足複合式內側楔型鞋款,於行走過程中下肢關節運動學、力動學等重要步態參數之變化。同時驗證不同組合材料與軟硬度複合式設計鞋款,藉由與穿著無楔型設計之控制組鞋款之動態生物力學參數比較,探討楔型設計之生物力學效應。受測者為十一位健康男性,穿著四款新型後足複合式內側楔型角度約為7度之鞋款,基底為較硬之材質,將楔型處用不同軟硬度材質彈性填平,及無楔型設計之控制組鞋款,進行步態分析及統計分析。實驗鞋款與控制鞋相比之結果,於鞋具冠狀面之腳跟著地時之角度,於單腳著地期之角度峰值,以及鞋具冠狀面之運動範圍皆無差異,但有顯著較小鞋具外翻力矩峰值。此外,膝關節有較小的內旋角度、外側地面反作用力峰值及其負載率;肌肉活化程度上,於雙腳著地期及單腳著地期皆有顯著較小的膝外側肌及腓骨長肌積分肌電,於雙腳著地期並有較大的膝內側積分肌電。穿著本研究之楔型鞋款在鞋具額狀面角度參數皆無顯著改變,可能是本研究之複合式楔型鞋款,雖不會像過去楔型鞋墊造成冠狀面的運動學參數之顯著改變,但能使得雙腳著地期鞋具外翻力矩顯著降低,這可能與此時期向外之地面反作用力顯著較小有關,此較小的向外之地面反作用力來自於此鞋款下層硬度相對高的楔型,留有的傳統楔型鞋墊之效應。此雙腳著地期與對照鞋款相比,楔型鞋墊對腓腸肌活化沒有顯著改變,卻能顯著降低腓骨長肌活化,所以楔型效應可使踝關節外翻力矩的峰值變小,有助於降低踝關節的負擔。穿著新型後足複合式楔型時,在無改變鞋子外翻發生的情況下,顯著減少膝關節內旋,有助於髕骨外側表面的壓力減少。健康受測者穿著楔型鞋墊於主觀與客觀生物力學參數皆有正向結果,建議以本研究為藍圖,在未來的研究中評估下肢肌肉骨骼疾病患者穿著此鞋款之步態。


The purpose of our study was to evaluate the effects of four types of rearfoot midsole with varus wedge on joint kinematics and kinetics of lower extremity during walking by comparing with control shoes without rearfoot wedge design. The eleven healthy asymptomatic males were recruited to perform gait analysis during walking while wearing testing shoes which were designed with 7 degrees varus wedge on bottom layer and control shoes. Subjective comfort and objective biomechanical indices, namely joint angles and moments at hip, knee, and ankle as well as ground reaction force and EMG variables during gait were calculated and compared between shoes conditions. When wearing varus wedge shoes, subjective hardness during walking is higher than that during CON (p=0.015). For the ankle joint kinetics, this first peak shoes evertor moment infer to the demand at the ankle joint which was associated with the abrupt eversion angular displacement occurs during the loading response. Despite of the non-significant changes of frontal plan joint kinematic variables, smaller peak ankle evertor moment were found while wearing varus wedge shoes, which may be associated with the smaller lateral ground reaction force and its loading rate. The results also showed that when wearing varus wedge shoes, without significant shoe condition effect on shoes kinematics variables, significantly decreased knee internal rotation was found, which may be help for decreased loading on lateral aspect of patella. In addition, varus wedge shoes seem to favorite the firing of muscle on the medial side of the knee compared with those on the lateral side. Lower peroneal longus muscle activation was also found. Finding in the current tend to support some previous researches which reported smaller significant differences of joint kinematic than joint kinetic when wearing VW. As indicated by several positive subjective and objective findings when wearing varus wedge in healthy adults, the design is encouraged for the use of footwear markets and for evaluating biomechanical effects for patients with musculoskeletal disorders such as patella femoral pain syndrome in future studies.

中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 文獻回顧 1 1.1.1 驗證楔型鞋墊之相關生物力學參數 1 1.1.1.1 立即影響 1 1.1.1.1.1 跑步 1 1.1.1.1.2 走路 5 1.1.1.2 長期影響 8 1.1.1.2.1 跑步 8 1.1.1.2.2 走路 9 1.1.2 髕股骨疼痛症候群(Patellofemoral Pain Syndrome)之臨床表徵及生物力學成因 13 1.1.2.1 髕股骨疼痛治療方法 13 1.1.2.2 髕股骨疼痛症候群於動作過程中之生物力學研究 14 1.2 研究目的 17 1.3 研究假設 18 第二章 實驗設計及方法 19 2.1 實驗對象 19 2.2 實驗設備 20 2.2.1 動作分析系統 20 2.2.2 肌電系統 20 2.2.3 中底後足內側楔型鞋墊 21 2.3 實驗流程 24 2.3.1 實驗室硬體系統校正 24 2.3.2 受試者準備與校正 24 2.3.3 受試者資料擷取 24 2.3.4 實驗問卷 25 2.4 步態週期定義 27 2.4.1 正常步態週期介紹 27 2.4.2 實驗步態週期定義 29 2.5 定義各關節名稱及關節在各平面活動名稱 29 2.6 資料分析 30 2.7 統計分析 32 第三章 研究結果 34 3.1 下肢關節角度 34 3.2 下肢關節力矩 44 3.3 地面反作用力 51 3.4 其他參數 55 第四章 討論 59 結論 67 參考文獻 68 附錄 77

1. Nester, C.J., Hutchins, S., and Bowker, P., Effect of foot orthoses on rearfoot complex kinematics during walking gait. Foot Ankle Int, 2001. 22(2): p. 133-9.
2. Powell, M., Seid, M., and Szer, I.S., Efficacy of custom foot orthotics in improving pain and functional status in children with juvenile idiopathic arthritis: a randomized trial. J Rheumatol, 2005. 32(5): p. 943-50.
3. Barton, C.J., et al., Foot and ankle characteristics in patellofemoral pain syndrome: a case control and reliability study. J Orthop Sports Phys Ther, 2010. 40(5): p. 286-96.
4. Eng, J.J. and Pierrynowski, M.R., The effect of soft foot orthotics on three-dimensional lower-limb kinematics during walking and running. Phys Ther, 1994. 74(9): p. 836-44.
5. Pitman, D. and Jack, D., A clinical investigation to determine the effectiveness of biomechanical foot orthoses as initial treatment for patellofemoral pain syndrome. J Prosthet Orthot, 2001. 12(4): p. 110-116.
6. Gross, M.T. and Foxworth, J.L., The role of foot orthoses as an intervention for patellofemoral pain. J Orthop Sports Phys Ther, 2003. 33(11): p. 661-670.
7. Novick, A. and Kelley, D., Case Study: Position and Movement Changes of the Foot With Orthotic Intervention During the Loading Response of Gait. J Orthop Sports Phys Ther, 1990. 11(7): p. 301-312.
8. McCulloch, M.U., Brunt, D., and Vander Linden, D., The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance. J Orthop Sports Phys Ther, 1993. 17(1): p. 2-10.
9. Williams, D.S., 3rd, McClay Davis, I., and Baitch, S.P., Effect of inverted orthoses on lower-extremity mechanics in runners. Med Sci Sports Exerc, 2003. 35(12): p. 2060-8.
10. Stacoff, A., et al., Effects of foot orthoses on skeletal motion during running. Clin Biomech (Bristol, Avon), 2000. 15(1): p. 54-64.
11. Nawoczenski, D.A. and Ludewig, P.M., Electromyographic effects of foot orthotics on selected lower extremity muscles during running. Arch Phys Med Rehabil, 1999. 80(5): p. 540-4.
12. Lewinson, R.T., et al., The effects of wedged footwear on lower limb frontal plane biomechanics during running. Clin J Sport Med, 2013. 23(3): p. 208-15.
13. Mundermann, A., et al., Foot orthotics affect lower extremity kinematics and kinetics during running. Clin Biomech (Bristol, Avon), 2003. 18(3): p. 254-62.
14. Messier, S.P. and Pittala, K.A., Etiologic factors associated with selected running injuries. Med Sci Sports Exerc, 1988. 20(5): p. 501-5.
15. Kilmartin, T.E. and Wallace, W.A., The Scientific Basis for the Use of Biomechanical Foot Orthoses in the Treatment of Lower-Limb Sports Injuries - a Review of the Literature. Brit J Sport Med, 1994. 28(3): p. 180-184.
16. Hreljac, A., Marshall, R.N., and Hume, P.A., Evaluation of lower extremity overuse injury potential in runners. Med Sci Sports Exerc, 2000. 32(9): p. 1635-41.
17. Perry, S.D. and Lafortune, M.A., Influences of Inversion Eversion of the Foot Upon Impact Loading during Locomotion. Clin Biomech, 1995. 10(5): p. 253-257.
18. Cheung, R.T., Ng, G.Y., and Chen, B.F., Association of footwear with patellofemoral pain syndrome in runners. Sports Med, 2006. 36(3): p. 199-205.
19. MacLean, C.L., Davis, I.S., and Hamill, J., Short- and long-term influences of a custom foot orthotic intervention on lower extremity dynamics. Clin J Sport Med, 2008. 18(4): p. 338-43.
20. Boldt, A.R., et al., Effects of Medially Wedged Foot Orthoses on Knee and Hip Joint Running Mechanics in Females With and Without Patellofemoral Pain Syndrome. J Appl Biomech, 2013. 29(1): p. 68-77.
21. Nester, C.J., van der Linden, M.L., and Bowker, P., Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture, 2003. 17(2): p. 180-7.
22. Pascual Huerta, J., et al., Effect of 7-degree rearfoot varus and valgus wedging on rearfoot kinematics and kinetics during the stance phase of walking. J Aa Podiat Med Assn, 2009. 99(5): p. 415-21.
23. Stefanyshyn, D.J., et al. Knee joint moments and patellofemoral pain syndrome in runners part i: a case control study; part ii: a prospective cohort study. in Footwear Biomechanics. 1999.
24. KaMen, G., et al., Research Methods in Biomechanics. Champaign, IL. 2004: Human Kinetics. 171-181.
25. Winter, D.A., Biomechanics and motor control of human movement. 2009: John Wiley & Sons.
26. Erhart, J.C., et al., Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects. J. Biomech., 2008. 41(14): p. 2989-94.
27. Schmalz, T., et al., The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses. Clin Biomech (Bristol, Avon), 2006. 21(6): p. 631-9.
28. Radzimski, A.O., Mundermann, A., and Sole, G., Effect of footwear on the external knee adduction moment—a systematic review. The knee, 2012. 19(3): p. 163-175.
29. Stefanyshyn, D.J., et al., Knee angular impulse as a predictor of patellofemoral pain in runners. Am. J. Sports Med., 2006. 34(11): p. 1844-1851.
30. Collins, N., et al., Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. BMJ, 2008. 337: p. a1735.
31. Hinman, R.S., et al., Lateral wedge insoles for medial knee osteoarthritis: effects on lower limb frontal plane biomechanics. Clin Biomech (Bristol, Avon), 2012. 27(1): p. 27-33.
32. Butler, R.J., et al., The effect of a subject-specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. J Orthop Res, 2007. 25(9): p. 1121-7.
33. Fisher, D.S., et al., In healthy subjects without knee osteoarthritis, the peak knee adduction moment influences the acute effect of shoe interventions designed to reduce medial compartment knee load. J Orthop Res, 2007. 25(4): p. 540-546.
34. Nigg, B.M., et al., Effect of shoe inserts on kinematics, center of pressure, and leg joint moments during running. Med Sci Sports Exerc, 2003. 35(2): p. 314-9.
35. Tiberio, D., The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model. J Orthop Sports Phys Ther, 1987. 9(4): p. 160-5.
36. Powers, C.M., The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther, 2003. 33(11): p. 639-46.
37. Dierks, T.A., et al., Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther, 2008. 38(8): p. 448-56.
38. Willson, J.D. and Davis, I.S., Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech (Bristol, Avon), 2008. 23(2): p. 203-211.
39. Souza, R.B. and Powers, C.M., Differences in Hip Kinematics, Muscle Strength, and Muscle Activation Between Subjects With and Without Patellofemoral Pain. J Orthop Sport Phys, 2009. 39(1): p. 12-19.
40. Salsich, G.B. and Long-Rossi, F., Do females with patellofemoral pain have abnormal hip and knee kinematics during gait? Physiother Theory Pract, 2010. 26(3): p. 150-159.
41. Salsich, G.B. and Perman, W.H., Patellofemoral joint contact area is influenced by tibiofemoral rotation alignment in individuals who have patellofemoral pain. J Orthop Sport Phys 2007. 37(9): p. 521-528.
42. Huberti, H.H. and Hayes, W.C., Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am, 1984. 66(5): p. 715-24.
43. Terry, G.C., Hughston, J.C., and Norwood, L.A., The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med, 1986. 14(1): p. 39-45.
44. Merican, A.M. and Amis, A.A., Anatomy of the lateral retinaculum of the knee. J Bone Joint Surg Br, 2008. 90(4): p. 527-34.
45. Puniello, M.S., Iliotibial band tightness and medial patellar glide in patients with patellofemoral dysfunction. J Orthop Sports Phys Ther, 1993. 17(3): p. 144-8.
46. Kwak, S.D., et al., Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res, 2000. 18(1): p. 101-8.
47. Li, G., et al., The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J Orthop Res, 2004. 22(4): p. 801-6.
48. Souza, T.R., et al., Temporal couplings between rearfoot-shank complex and hip joint during walking. Clinical Biomechanics, 2010. 25(7): p. 745-748.
49. Zammit, G.V. and Payne, C.B., Relationship between positive clinical outcomes of foot orthotic treatment and changes in rearfoot kinematics. J Aa Podiat Med Assn, 2007. 97(3): p. 207-212.
50. McPoil, T.G. and Hunt, G.C., Evaluation and management of foot and ankle disorders: present problems and future directions. J Orthop Sports Phys Ther, 1995. 21(6): p. 381-8.
51. Leung, A.K., Mak, A.F., and Evans, J.H., Biomedical gait evaluation of the immediate effect of orthotic treatment for flexible flat foot. Prosthet Orthot Int, 1998. 22(1): p. 25-34.
52. Eng, J.J. and Pierrynowski, M.R., Evaluation of soft foot orthotics in the treatment of patellofemoral pain syndrome. Phys Ther, 1993. 73(2): p. 62-8; discussion 68-70.
53. Webster, C.E., et al. In-shoe devices can reduce the adduction moments at the knee during walking. in Sixth Annual Gait and Clinical Movement Analysis Meeting. 2001.
54. Maquet, P.G.J., Biomechanics of the Knee: With Application to the Pathogenesis and the Surgical Treatment of Osteoarthritis. 2012: Springer Berlin Heidelberg.
55. Lafortune, M.A., et al., Foot inversion-eversion and knee kinematics during walking. J Orthop Res, 1994. 12(3): p. 412-20.
56. Kennedy, J.G., et al., Foot and ankle injuries in the adolescent runner. Curr Opin Pediatr, 2005. 17(1): p. 34-42.
57. Bowman, G.D., New concepts in orthotic management of the adult hyperpronated foot: preliminary findings. J Prosthet Orthot, 1997. 9(2): p. 77-81.
58. Shih, Y.F., Wen, Y.K., and Chen, W.Y., Application of wedged foot orthosis effectively reduces pain in runners with pronated foot: a randomized clinical study. Clin Rehabil, 2011. 25(10): p. 913-23.
59. Johnston, L.B. and Gross, M.T., Effects of foot orthoses on quality of life for individuals with patellofemoral pain syndrome. J Orthop Sports Phys Ther, 2004. 34(8): p. 440-8.
60. Nawoczenski, D.A., Cook, T.M., and Saltzman, C.L., The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J Orthop Sports Phys Ther, 1995. 21(6): p. 317-27.
61. Sutlive, T.G., et al., Identification of individuals with patellofemoral pain whose symptoms improved after a combined program of foot orthosis use and modified activity: a preliminary investigation. Phys Ther, 2004. 84(1): p. 49-61.
62. Powers, C.M., et al., Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther, 2003. 33(11): p. 677-85.
63. Barton, C.J., et al., Greater peak rearfoot eversion predicts foot orthoses efficacy in individuals with patellofemoral pain syndrome. Br J Sports Med, 2011. 45(9): p. 697-701.
64. Vicenzino, B., et al., A clinical prediction rule for identifying patients with patellofemoral pain who are likely to benefit from foot orthoses: a preliminary determination. Br J Sports Med, 2010. 44(12): p. 862-6.
65. Barton, C.J., Menz, H.B., and Crossley, K.M., Clinical predictors of foot orthoses efficacy in individuals with patellofemoral pain. Med Sci Sports Exerc, 2011. 43(9): p. 1603-10.
66. Levinger, P. and Gilleard, W., Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking. Gait Posture, 2007. 25(1): p. 2-8.
67. Lewinson, R.T., Worobets, J.T., and Stefanyshyn, D.J., Knee abduction angular impulses during prolonged running with wedged insoles. Proc Inst Mech Eng H, 2013. 227(7): p. 811-4.
68. Grady, E.P., et al., Rheumatic findings in Gulf War veterans. Arch Intern Med, 1998. 158(4): p. 367-71.
69. Taunton, J.E., et al., A retrospective case-control analysis of 2002 running injuries. Br J Sports Med, 2002. 36(2): p. 95-101.
70. Murray, I.R., et al., How evidence based is the management of two common sports injuries in a sports injury clinic? Brit J Sport Med, 2005. 39(12): p. 912-916.
71. Fulkerson, J.P. and Arendt, E.A., Anterior knee pain in females. Clin Orthop Relat Res, 2000. 372(372): p. 69-73.
72. Malek, M.M. and Mangine, R.E., Patellofemoral pain syndromes: a comprehensive and conservative approach. J Orthop Sports Phys Ther, 1981. 2(3): p. 108-16.
73. Devereaux, M.D. and Lachmann, S.M., Patello-femoral arthralgia in athletes attending a Sports Injury Clinic. Br J Sports Med, 1984. 18(1): p. 18-21.
74. Grelsamer, R.P. and Klein, J.R., The biomechanics of the patellofemoral joint. J Orthop Sports Phys Ther, 1998. 28(5): p. 286-98.
75. Bolgla, L.A. and Boling, M.C., An update for the conservative management of patellofemoral pain syndrome: a systematic review of the literature from 2000 to 2010. Int J Sports Phys Ther, 2011. 6(2): p. 112-25.
76. Sheehy, P., et al., An electromyographic study of vastus medialis oblique and vastus lateralis activity while ascending and descending steps. J Orthop Sport Phys, 1998. 27(6): p. 423-429.
77. Miller, J.P., Sedory, D., and Croce, R.V., Vastus medialis obliquus and vastus lateralis activity in patients with and without patellofemoral pain syndrome. J Sport Rehabil, 1997. 6(1): p. 1-10.
78. Schulthies, S.S., et al., Does the Q angle reflect the force on the patella in the frontal plane? Phys Ther, 1995. 75(1): p. 24-30.
79. Livingston, L.A., The quadriceps angle: a review of the literature. J Orthop Sports Phys Ther, 1998. 28(2): p. 105-9.
80. Bolgla, L.A., et al., Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sport Phys, 2008. 38(1): p. 12-18.
81. Ireland, M.L., et al., Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther, 2003. 33(11): p. 671-676.
82. Messier, S.P., et al., Etiologic factors associated with patellofemoral pain in runners. Med Sci Sports Exerc, 1991. 23(9): p. 1008-15.
83. Mizuno, Y., et al., Q-angle influences tibiofemoral and patellofemoral kinematics. J Orthop Res, 2001. 19(5): p. 834-40.
84. Elias, J.J., et al., Reducing the lateral force acting on the patella does not consistently decrease patellofemoral pressures. Am. J. Sports Med., 2004. 32(5): p. 1202-1208.
85. Myer, G.D., et al., The incidence and potential pathomechanics of patellofemoral pain in female athletes. Clin Biomech (Bristol, Avon), 2010. 25(7): p. 700-7.
86. Prins, M.R. and van der Wurff, P., Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother, 2009. 55(1): p. 9-15.
87. MacIntyre, N.J., et al., Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome. J Bone Joint Surg Am, 2006. 88A(12): p. 2596-2605.
88. Kettunen, J.A., et al., Knee arthroscopy and exercise versus exercise only for chronic patellofemoral pain syndrome: a randomized controlled trial. BMC Med, 2007. 5(1): p. 38.
89. Heintjes, E., et al., Pharmacotherapy for patellofemoral pain syndrome. Cochrane Database Syst Rev, 2004. 3(3): p. CD003470.
90. Petersen, W., et al., Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc, 2014. 22(10): p. 2264-74.
91. Gilleard, W., McConnell, J., and Parsons, D., The effect of patellar taping on the onset of vastus medialis obliquus and vastus lateralis muscle activity in persons with patellofemoral pain. Phys Ther, 1998. 78(1): p. 25-32.
92. Warden, S.J., et al., Patellar taping and bracing for the treatment of chronic knee pain: a systematic review and meta-analysis. Arthritis Rheum, 2008. 59(1): p. 73-83.
93. Draper, C.E., et al., Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J Orthop Res, 2009. 27(5): p. 571-7.
94. Draper, C.E., et al., Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint. J Orthop Res, 2012. 30(2): p. 209-213.
95. Powers, C.M., et al., Effect of bracing on patellofemoral joint stress while ascending and descending stairs. Clin J Sport Med, 2004. 14(4): p. 206-214.
96. Heintjes, E., et al., Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst Rev, 2003. 4(4): p. CD003472.
97. Harvie, D., O’Leary, T., and Kumar, S., A systematic review of randomized controlled trials on exercise parameters in the treatment of patellofemoral pain: what works? J Multidiscip Healthc, 2011. 4: p. 383.
98. Feller, J.A., et al., Surgical biomechanics of the patellofemoral joint. Arthroscopy, 2007. 23(5): p. 542-53.
99. Crossley, K., et al., Anterior knee pain. Clinical sports medicine. 3rd ed. Sydney, Australia: McGraw-Hill. 2006. 506-37.
100. D'Hondt N, E., et al., Orthotic devices for treating patellofemoral pain syndrome. Cochrane Database Syst Rev, 2002(2): p. CD002267.
101. Barton, C.J., et al., Walking kinematics in individuals with patellofemoral pain syndrome: a case-control study. Gait Posture, 2011. 33(2): p. 286-91.
102. Callaghan, M.J. and Baltzopoulos, V., Gait analysis in patients with anterior knee pain. Clin Biomech (Bristol, Avon), 1994. 9(2): p. 79-84.
103. Duffey, M.J., et al., Etiologic factors associated with anterior knee pain in distance runners. Med Sci Sports Exerc, 2000. 32(11): p. 1825-32.
104. Levinger, P. and Gilleard, W., The heel strike transient during walking in subjects with patellofemoral pain syndrome. Phys Ther Sport 2005. 6(2): p. 83-88.
105. Powers, C.M., et al., Comparison of foot pronation and lower extremity rotation in persons with and without patellofemoral pain. Foot Ankle Int, 2002. 23(7): p. 634-640.
106. Green, S.T., Patellofemoral syndrome. J Bodyw Mov Ther, 2003. 9(1): p. 16-26.
107. Cowan, S.M., et al., Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil, 2001. 82(2): p. 183-9.
108. Fulkerson, J.P., Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med, 2002. 30(3): p. 447-56.
109. Thomee, R., Augustsson, J., and Karlsson, J., Patellofemoral pain syndrome: a review of current issues. Sports Med, 1999. 28(4): p. 245-62.
110. Powers, C.M., The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther, 2010. 40(2): p. 42-51.
111. Lu, T.-W., Geometric and mechanical modelling of the human locomotor system. 1997, University of Oxford.
112. Wang, T.M., et al., Biomechanical Role of the Locomotor System in Controlling Body Center of Mass Motion in Older Adults during Obstructed Gait. J Mech, 2010. 26(2): p. 195-203.
113. Perotto, A. and Delagi, E.F., Anatomical guide for the electromyographer: the limbs and trunk. 2005: Charles C Thomas Publisher.
114. Magee, D.J., Orthopedic physical assessment. 2014: Elsevier Health Sciences.
115. Mundermann, A., Dyrby, C.O., and Andriacchi, T.P., Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum, 2005. 52(9): p. 2835-2844.
116. Messier, S.P., et al., Do older adults with knee osteoarthritis place greater loads on the knee during gait? A preliminary study. Arch Phys Med Rehabil, 2005. 86(4): p. 703-709.
117. Andriacchi, T.P., Ogle, J.A., and Galante, J.O., Walking Speed as a Basis for Normal and Abnormal Gait Measurements. J Biomech, 1977. 10(4): p. 261-268.
118. Robertson, G., et al., Research Methods in Biomechanics, 2E. 2013: Human Kinetics.
119. Albertus-Kajee, Y., et al., Alternative methods of normalising EMG during running. J Electromyogr Kinesiol, 2011. 21(4): p. 579-86.
120. Stiehl, J.B. and Inman, V.T., The joints of the ankle. Vol. 177. 1976: Williams & Wilkins Baltimore.
121. Lee, T.Q., Morris, G., and Csintalan, R.P., The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther, 2003. 33(11): p. 686-93.
122. Wilson, T., The measurement of patellar alignment in patellofemoral pain syndrome: are we confusing assumptions with evidence? J Orthop Sports Phys Ther, 2007. 37(6): p. 330-341.

無法下載圖示 全文公開日期 2020/02/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE