簡易檢索 / 詳目顯示

研究生: 蔡明倫
Ming-Lun Tsai
論文名稱: 風扇性能評估與設計方法之整合研究
An Integrated Study of Performance Evaluation and Design Method for Small Cooling Fans
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 楊照彥
none
郭鴻森
none
蔡博章
none
洪勵吾
none
林榮慶
none
陳炤彰
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 153
中文關鍵詞: 風扇操作點數值模擬設計方法
外文關鍵詞: cooling fans, operating point, numerical simulation, design method
相關次數: 點閱:473下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著各式電腦主機與處理器設計的微型化發展之下,所形成日益嚴苛的空間限制與環境阻抗大幅影響了散熱效果。因此,在不同操作環境中評估風扇性能,以及開發高效能散熱風扇的需求也隨之而起。本研究為完整評估風扇性能,以市面上常見款式之十二公分軸流風扇與八公分後傾式離心扇作為研究目標,將風扇各操作點的流場分析、風扇效率計算、扭力估算與噪音分析,藉由數值模擬方式詳細地作一整合式之探討;並規劃製作相關的風扇原型以進行性能實驗比較,結果顯示數值計算之風扇性能與聲壓頻譜均與量測結果有良好之一致性,充分證實此完整深入之風扇性能評估方式可提供相關性能改善設計之參考。
此外,本研究亦結合葉柵理論分析與反向設計方法來發展一套風扇設計流程,先以適當的數值模式計算低雷諾數下NACA-44系列翼形的升阻力係數,建立一可靠且可供設計程式讀取之翼形資料庫。接著以一目標操作點為依據,設計出風扇幾何相關參數;並且,在相同的幾何外型參數下、藉由改變不同阻抗下之流量、修正全壓設定,找出其它操作點的速度與壓力分佈;再建立風扇實體模型以進行實驗量測與數值計算之分析,並將程式設計之不同操作點的軸向速度、全壓分佈與攻角值和數值模擬作比較,結果顯示其趨勢相當一致。這表示本研究之設計程序與理念能夠符合,可呈現風扇實際運轉下的流場機制,並具有一定的可靠性。
綜合來說,本研究提供了一套整合氣動、機電、噪音之完整風扇性能評估方式,風扇設計者可從相關評估資訊中擬定性能改善方案。而使用反向設計程式,則可讓設計者直接找出符合操作點之風扇外型,並在設計過程之中能夠立即得到各操作點的流場資訊;此完整之評估方法與設計流程皆能大幅擴增風扇工程師的設計視野,提升高效能風扇之設計效率。


Due to the increasing system resistance and space limitation on computer devices, the requirement for developing high-performance cooling fans is recently existed. The performance evaluation of fan design under different operating conditions is evidently in great demand for practical engineering applications. Therefore, this comprehensive study is aimed to offer the overall technical information for thoroughly evaluating the fan performance. At first, a 120mm-diameter axial-flow fan and an 80 mm-diameter backward-inclined centrifugal fan are chosen to serve as the research subjects for demonstration purpose. Numerical simulations are then utilized to perform the detailed flow visualization, torque calculation, efficiency estimation, and noise analysis for comparing to the experimental results. As a result, the predicted fan performance and sound pressure level (SPL) spectrum agree well with experimental tests. The complete evaluation outcome for fans provides detailed flow information for performance enhancement.
In addition, this research also developed an integrated design scheme through combining the cascade theory and inverse design procedure for small axial-flow fans. First of all, a reliable set of low-Reynolds-number aerodynamic characteristics for NACA airfoils is constructed to serve as the design database via the CFD calculation incorporated with a dependable turbulent model. Then, with the inputs of design conditions and few geometric settings, this design program can generate a fan configuration to meet with the desired performance requirement. Furthermore, by changing the operating flow rate for this fan geometry, this design approach can yield the axial velocity and the pressure distributions for various operating points over the entire performance curve. Thereafter, a CNC-fabricated prototype and a 3D numerical model are chosen to validate the design prediction of fan performance via both experimental and CFD approaches. As a result, a slight deviation among the designed, experimental, and numerical outcomes is observed throughout the P-Q performance curve. The detailed distributions on the axial velocity, the total pressure, and variation of angle-of-attack are all in good agreements between numerical results and design settings under various operating points. It implies that this design program can yield reasonable design outcomes. In conclusion, this study establishes an integrated aerodynamic, acoustic, and electro-mechanical evaluation approach and develops a systematic and user-friendly inverse design program to provide the fan engineer’s design ability.

中文摘要 I ABSTRACT III CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XI LIST OF TABLES XI Chapter 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Literature Survey 4 1.2.1 Performance evaluation 4 1.2.2 Design method 10 1.3 Motivation and Approach 14 1.3.1 Motivation 14 1.3.2 Objectives and methodology 17 1.4 Overview of the Dissertation 21 Chapter 2 EXPERIMENTAL SETUP 25 2.1 Performance Test Setup 27 2.2 Acoustic Test Setup 32 2.3 Experimental Results 35 2.3.1 Axial-flow fan 35 2.3.2 Centrifugal fan 39 Chapter 3 NUMERICAL SCHEME 43 3.1 Mathematical Models 44 3.1.1 Governing equations and turbulent model 45 3.1.2 Acoustic sound model 49 3.2 Boundary Conditions 51 3.3 Numerical Model and Grid Verification 54 3.3.1 Axial-flow fan 54 3.3.2 Centrifugal fan 58 3.3.3 Airfoil 61 Chapter 4 PERFORMANCE EVALUATION 66 4.1 Axial-flow Fan 67 4.1.1 Performance evaluation 67 4.1.2 Efficiency estimation 78 4.1.3 Acoustic noise evaluation 82 4.2 Centrifugal Fan 85 4.2.1 Performance evaluation 85 4.2.2 Efficiency estimation 96 4.2.3 Acoustic noise evaluation 100 4.2.4 Modification alternatives 103 Chapter 5 FAN DESIGN SCHEME 108 5.1 Design Approach 108 5.1.1 Cascade theory 110 5.1.2 Inverse design program 114 5.1.3 Airfoil database 125 5.1.4 Design example 126 5.2 Comparing Results and Discussions 131 5.2.1 Axial velocity distribution 134 5.2.2 Total head distribution 137 5.2.3 Variation of AOA 139 Chapter 6 CONCLUSIONS 142 6.1 Concluding Remarks 142 6.2 Future Work 146 References 148 作者簡介 153

References

[1] Lin, S. C. and Chou, C. A., “Blockage Effect of Axial-Flow Fans Applied on Heat Sink Assembly”, Applied Thermal Engineering, Vol. 24, pp. 2375-2389 (2004)
[2] Lin, S. C., Chuang, F. S., and Chou, C. A., “Experimental Study of the Heat Sink Assembly with Oblique Straight Fins”, Experimental Thermal and Fluid Science, Vol. 29, pp. 591-600 (2005)
[3] Logan, E. and Roy, R., Handbook of Turbomachinery, Marcel Dekker Inc., New York (2003)
[4] Yahya, S. M., Turbines, Compressors and Fans, McGraw-Hill Publishing Co., New Delhi (2005)
[5] Peng, W. W., Fundamentals of Turbomachinery, John Wiley & Sons, Inc., New Jersey (2007)
[6] Eck, B., Fans: Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans, First English Edition, Pergamon Press, Oxford, England (1973)
[7] Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”, Journal of Engineering for Power, Vol. 103, No. 2, pp. 393-399 (1981)
[8] Sørensen, D. N., “Minimizing the Trailing Edge Noise from Rotor-Only Axial Fans Using Design Optimization”, Journal of Sound and Vibration, Vol. 247, pp. 305-323 (2001)
[9] Lin, S. C. and Huang, C. L., “An Integrated Experimental and Numerical Study of Forward-Curved Centrifugal Fan”, Experimental Thermal and Fluid Science, Vol. 26, pp. 421-434 (2002)
[10] Han, S. Y. and Maeng, J. S., “Shape Optimization of Cut-off in a Multi-Blade Fan/Scroll System Using Neural Network”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 2833-2839 (2003)
[11] Gong, H. L., Je, H. B., and Hwan, J. M., “Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan”, Flow, Turbulence and Combustion, Vol. 70, pp. 241-265 (2003)
[12] Wu, J., Graham, J., Nguyen, B., and Mehidi, M. N., “Energy Efficiency Study on Axial Flow Impellers”, Chemical Engineering and Processing, Vol. 45, pp. 625-632 (2006)
[13] Hong, K. T. and Lin, S. C., “An Integrated Numerical and Experimental Study on the Design of Small Axial-Flow Fans”, The 14th National Computational Fluid Dynamics Conference, Nantou, Taiwan (2007)
[14] Lighthill, M. J., “On Sound Generated Aerodynamically І: General Theory”, Proceedings of the Royal Society of London, Vol. 211, pp. 564-587 (1952)
[15] Rafael, B. T., Sandra, V. S., Juan Pablo, H. C., and Carlos, S. M., “Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan”, Journal of Fluids Engineering, Vol. 128, pp. 359-369 (2006)
[16] Liu, Q., Qi, D., and Mao, Y., “Numerical Calculation of Centrifugal Fan Noise”, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 220, pp. 1167-1177 (2006)
[17] Lu, H. Z., Huang, L., So, R. M. C., and Wang, J., “A Computational Study of the Interaction Noise from a Small Axial-Flow Fan”, Journal of the Acoustical Society of America, Vol. 122, pp. 1404-1415 (2007)
[18] Sandra, V. S., Rafael, B. T., Carlos, S. M., and Bruno, P. G., “Reduction of the Aerodynamic Tonal Noise of a Forward-Curved Centrifugal Fan by Modification of the Volute Tongue Geometry”, Applied Acoustics, Vol. 69, pp. 225-232 (2008)
[19] Goto, A., “Application of an Inverse Cascade Design Method to an Axial fan”, The Japan Society of Mechanical Engineers, Vol. 30, pp. 1414-1422 (1987)
[20] Lewis, R. I., Turbomachinery Performance Analysis, John Wiley and Sons, New York (1996)
[21] Cruz, A. G. B., Mesquita A. L. A., and Blanco, C. J. C., “Minimum Pressure Coefficient Criterion Applied in Axial-Flow Hydraulic Turbines”, Proceedings of the Royal Society, London, Vol. 211, pp. 564-587 (2008)
[22] ANSI/AMCA Standard 210-99, Laboratory Method of Testing Fans for Aerodynamic Performance Rating, Air Movement and Control Association, Inc., Illinois (1999)
[23] ISO-3745, Acoustics-Determination of Sound Power Levels of Noise Sources Using Sound Pressure-Precision Methods for Anechoic and Hemi-Anechoic Rooms, International Organization for Standardization, Switzerland (1977)
[24] Fluent 6.3 Documentation, FLUENT Inc., Boston (2006)

[25] CNS-8753, Determination of Sound Power Level of Noises for Fan, Blower, and Compressors, Chinese National Standard, Taiwan (1982)
[26] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England. (1972)
[27] Smirnov, R., Shi, S., and Celik, I., “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling”, Journal of Fluids Engineering, Vol. 123, pp. 359-371 (2001)
[28] Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings”, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas (2009)
[29] Spalart, P., Jou, W. H., Stretlets, M., and Allmaras, S., “Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach”, Proceedings of the 1st AFOSR International Conference on DNS/LES, Louisiana (1997)
[30] Spalart, P. and Allmaras, S., “A One-Equation Turbulence Model for Aerodynamic Flows”, Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics (1992)
[31] Hinze, J. O., Turbulence, McGraw-Hill Publishing Co. (1975)
[32] Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342 (1969)

[33] Blevins, R. D., Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co. Inc., New York (1984)
[34] Miley, S. J., “A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications”, Texas A & M University, Contract No. DE-AC04-76DP03533 (1982)
[35] Abbott, I. H. and Doenhoff, A. E., Theory of Wing Sections Including a Summary of Airfoil Data, Dover Publications, New York (1958)

QR CODE