簡易檢索 / 詳目顯示

研究生: 吳明翰
Ming-Han Wu
論文名稱: 大規模疾病檢測之高通量晶片分佈機制
A Mechanism of High Throughput Reagent Distribution for Large-Scale Disease Detection
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 趙修武
Shiu-Wu Chau
林彥亨
Yen-Heng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 數值模擬微流體檢體分佈
外文關鍵詞: Numerical Simulation, Microfluidics, Reagent Distribution
相關次數: 點閱:303下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對高通量微流體系統的效能來說,快速及均勻的檢體分佈是非常重要的,而檢體分佈的精確性與均勻性和微流道的幾何形狀設計息息相關。此研究的目的為在T字形的微流道中,將液珠(檢體)均勻的分散至各個反應流道,並瞭解幾何形狀設計對液珠均勻分散的影響。使用氣液兩相流的模組進行數值模擬,以觀察液珠要分開時在內部所產生的壓力分佈及流速變化,並完成改良型的設計,使液珠內部的流速變化達到最小,而讓液珠在T字型流道中能較順暢的被分散到反應流道。在此研究中是使用微铣削加工及熱黏合來製作高分子塑材實驗晶片。實驗的方式是將2 μl的檢體用定量分注器注入晶片中,再施以均勻的氣壓驅動檢體分散至各個反應流道中。在分散檢體的過程中,研究的結果證實改良型晶片達到較好的均勻性、較高的可靠度、較少的檢體損失,因此改良型的設計可被應用在設計有多反應流道的高通量微流體晶片。


    Rapid and uniform reagent distribution is critical to the performance of a high-throughput microfluidic system, and the geometry design of the microchannel dominations the accuracy and uniformity of the split droplet distribution. This study focuses on the uniform fission of a single liquid droplet in a T-junction microchannel and the aim is to understand the impact of the geometry design to the uniformity of the split droplets. A gas-liquid modeling was realized in the transient numerical simulation to investigate the pressure distribution and the flowing velocities inside the droplet during the splitting process, which leads to a modified design of the T-junction that minimizes the velocity difference inside the droplet and results in a more smooth splitting process. The polymer microfluidic devices were manufactured with micromilling and thermal bonding for droplet distribution experiments. In the multiple experiments, a 2 μl reagent was loaded into the microfluidic device and an uniform pneumatic pressure was applied to push the droplet downward to the T-junction for splitting. The experiment results reveal that a modified T-junction can achieve better uniformity, higher reliability, and less reagent loss in a modified T-junction during the droplet splitting process, which can be applied in designing a high throughput microfluids device for large-scale experiment.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIX 符號表 XX 第一章 導論 1 1.1研究背景 1 1.2研究目的 7 1.3研究方法 8 第二章 模擬分析 10 2.1統御方程式與邊界條件 10 2.1.1統御方程式 10 2.1.2邊界條件 12 2.2分析方法 16 2.3入口壓力的影響 18 2.4入口尺寸的影響 22 2.5接觸角的影響 25 2.6流道尺寸的影響 27 2.7圓角幾何的影響 30 2.8分流結構尖點高度的影響 36 2.9分流結構偏移的影響 41 2.10模擬分析總結 45 第三章 生醫晶片製程 50 3.1微铣削 50 3.1.1前言 50 3.1.2操作使用方式 52 3.2晶片設計與製造 57 3.2.1標準型晶片 57 3.2.2改良型晶片 63 3.3熱黏合 70 3.3.1前言 70 3.3.2烤箱與晶片黏合面的溫度量測 72 3.3.3操作方式與參數設定 75 3.3.4微流道截面量測 77 第四章 實驗設備與方法 82 4.1實驗設備 82 4.1.1製程設備 82 4.1.2量測設備 87 4.2實驗方法 93 4.2.1檢體驅動及分佈 93 4.2.2檢體量測 95 第五章 實驗結果與討論 97 5.1標準型晶片實驗結果 97 5.2改良型晶片實驗結果 103 5.3標準型與改良型綜合討論 109 第六章 結論與未來展望 113 6.1結論 113 6.2未來展望 115 參考文獻 116 附錄A 不同入口壓力之流場壓力與速度圖 120 附錄B 標準型交會處之流場壓力與速度圖 128 附錄C 綜合型交會處之流場壓力與速度圖 131 附錄D 標準型接觸角70度之流場壓力與速度圖 134 附錄E 綜合型接觸角70度之流場壓力與速度圖 137 附錄F 改良型交會處之流場壓力與速度圖 140

    [1] http://www.alere.com/ww/en/brands/binaxnow.html. Cited 28 December 2012
    [2] http://catalog.bd.com/bdCat/viewProduct.doCustomer?productNumber=256050. Cited 28 December 2012
    [3] http://www.quidel.com/products/product_detail.php?prod=101&group=1. Cited 28 December 2012
    [4] W. Wang, Z.X. Li, R. Luo, S.H. Lu, A.D. Xu, Y.J. Yang, “Droplet-based micro oscillating-flow PCR chip,” J. Micromech. Microeng., vol. 15, pp. 1369-1377, 2005.
    [5] S.C. Terry, J.H. Jerman, J.B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices, vol. 26, pp. 1880-1886, 1979.
    [6] H. Nagai, Y. Murakami, K. Yokoyama, E. Tamiya, “High-throughput PCR in silicon based microchamber array,” Bios. Bioelectro., vol. 16, pp. 1015-1019, 2001.
    [7] P. J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, “Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays,” Biotechnol Bioeng, vol. 89, pp. 1-8, 2005.
    [8] M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, “Rapid PCR in a continuous flow device,” Lab Chip, vol. 4, pp. 638-645, 2004.
    [9] K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, “A heater-integrated transparent microchannel chip for continuous-flow PCR,” Sens. Actuators B, vol. 84, pp. 283-289, 2002.
    [10] D.J. Harrison, A. Manz, Z. Fan, H. Luedi, H.M. Widmer, “Capillary electrophoresis and sample injection systems integrated on a planar glass chip,” Anal. Chem., vol. 64, pp. 1926-1932, 1992.
    [11] C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, A. Puntambekar, J.Y. Lee, “Disposable smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE, vol. 92, pp. 154-173, 2004.
    [12] P. Mela, A. Berg, Y. Fintschenko, E.B. Cummings, B.A. Simmons, B.J. Kirby, “The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices,” Electrophoresis, vol. 26, pp. 1792-1799, 2005.
    [13] Y. Yang, C. Li, J. Kameoka, K.H. Lee, H.G. Craighead, “A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry,” Lab Chip, vol. 5, pp. 869-876, 2005.
    [14] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Anal. Chem., vol. 69, pp. 4783-4789, 1997.
    [15] E. Vazquez, C.A. Rodriguez, A. Elias-Zuňiga, J. Ciurana, “An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling,” Int. J Adv. Manuf. Technol., vol. 51, pp.945-955, 2010.
    [16] J.S. Mecomber, D. Hurd, P.A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J Mech. Tools Manuf., vol. 45, pp. 1542-1550, 2005.
    [17] M.Y. Ali, “Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling,” IJMME, vol. 4, pp. 93-97, 2009.
    [18] M.L. Hupert, W.J. Guy, S.D. Llopis, H. Shadpour, S. Rani, D.E. Nikitopoulos, S.A. Soper, “Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices,” Microfluid Nanofluid, vol. 3, pp. 1-11, 2007.
    [19] E.S. Topal, “The role of stepover ratio in prediction of surface roughness in flat end milling,” Int. J Mech. Sci., vol. 51, pp. 782-789, 2009.
    [20] B.J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics,” Sens. Actuators B, vol. 114, pp. 239-247, 2006.
    [21] Y.C. Su, J. Shah, L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng., vol. 14, pp. 415-422, 2004.
    [22] M. Heckele, W. Bacher, K.D. Muller, “Hot embossing-The molding technique for plastic microstructures,” Microsystem Technol., vol. 4, pp. 122-124, 1998.
    [23] S.K. Sia, G.M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, vol. 24, pp. 3563-3576, 2003.
    [24] G.S. Fiorini, D.T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” BioTechniques, vol. 38, pp. 429-446, 2005.
    [25] H. Becker, C. Gartner, “Polymer microfabrication technologies for microfluidic systems,” Anal Bioanal Chem, vol. 390, pp. 89-111, 2008.
    [26] T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, “Plastic advances microfluidic devices,” Anal. Chem., vol.74, pp. 78A-86A, 2002.
    [27] S.A. Soper, S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy, “Polymeric microelectromechanical systems,” Anal. Chem., vol. 72, pp. 643A-651A, 2000.
    [28] M.L. Hupert, W.J. Guy, S.D. Llopis, C. Situma, S. Rani, D.E. Nikitopoulos, S.A. Soper, “High-Precision micromilling for low-cost fabrication of metal mold masters,” Proc. of SPIE, vol. 6112, pp. 61120B1-12, 2005.
    [29] C.W. Tsao, D.L. DeVoe, “Bonding of thermoplastic polymer microfludics,” Microfluid Nanofluid, vol. 6, pp. 1-16, 2009.
    [30] Y. Sun, Y.C. Kwok, N.T. Nguyen, “Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation,” J. Micromech. Microeng., vol. 16, pp. 1681-1688, 2006.
    [31] X. Zhu, G. Liu, Y. Guo, Y. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol., vol. 13,pp. 403-407, 2007.
    [32] Y.C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip, vol. 4, pp. 292-298, 2004.
    [33] A. Aramcharoen, P.T. Mativenga, “Size effect and tool geometry in micromilling of tool steel,” Precision Engineering, vol. 33, pp. 402-407, 2009.
    [34] K. Handique, D.T. Burke, C.H. Mastrangelo, M.A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem., vol. 73, pp. 1831-1838, 2001.
    [35] J. Tan, S.W. Li, K. Wang, G.S. Luo, “Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route,” Chemical Engineering Journal, vol. 146, pp. 428-433, 2009.
    [36] I.R.G. Ogilvie, V.J. Sieben, C.F.A. Floquet, R. Zmijan, M.C. Mowlem, H. Morgan, “Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC,” J. Micromech. Microeng., vol. 20, pp. 1-8, 2010.
    [37] M.N. Kashid, A. Renken, L. Kiwi-Minsker, “CFD modeling of liquid-liquid multiphase microstructured reactor: Slug flow generation,” Chemical Engineering Research and Design, vol. 88, pp. 362-368, 2010.
    [38] B.Y. Guo, Q.F. Hou, A.B. Yu, L.F. Li, J. Guo, “Numerical modeling of the gas flow through perforated plates,” Chemical Engineering Research and Design, vol. 91, pp. 403-408, 2013.
    [39] Y. Kakinuma, N. Yasuda, T. Aoyama, “Micromachining of Soft Polymer Material applying Cryogenic Cooling,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 2, pp. 560-569, 2008.
    [40] C.H. Yeh, Y.C. Chen, Y.C. Lin, “Generation of droplets with different concentrations using gradient-microfluidic droplet generator,” Microfluid Nanofluid, vol. 11, pp. 245-253, 2011.
    [41] P.C. Chen, “Micromilling Manufacturing for Polymeric Microfluidic Devices,” Proceedings of the 29th National Conference on Mechanical Engineering of CSME, Kaohsiung, Taiwan, Dec. 2012.
    [42] P.C. Chen, M.H. Wu, K.C. Kuo, “Design and Fabrication of a Polymeric Microfluidic Disk for Bio-applications,” Symposium on Engineering Medicine and Biology Applications, Tainan, Taiwan, Feb. 2013.
    [43] P.C. Chen, “A Modular Approach to High Throughput Microsystems,” Doctoral dissertation, Louisiana State University, USA, 2009.
    [44] A. Folch, “Introduction to BioMEMS,” USA: CRC Press, 2012.
    [45] 謝曉星(民80)。基本流體力學。台北市:台灣東華書局股份有限公司。

    QR CODE