簡易檢索 / 詳目顯示

研究生: 王俊雄
Chun-Hsiung Wang
論文名稱: 房車內乘客舒適度之數值模擬
Numerical Simulation of Passenger thermal Comfort inside a Car Cabin
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
郭鴻森
Hong-Sen Kou
李基禎
Ji-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 170
中文關鍵詞: 舒適度太陽日照熱輻射
外文關鍵詞: PMV, solar ray
相關次數: 點閱:187下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車是現代人日常生活中必不可缺少的交通工具,所以如何能讓車輛更安全、舒適、節能及人性化,就變成是車輛工程師努力的目標。由於現在對於車廂內部舒適度之考量,尚未制訂一標準格式,再加上數值模擬時受限於計算時間與電腦配備,所以較少考量到熱輻射模型,而太陽日照方面僅以等熱通量替代,並未考量到日照方位,所以本文將整合以上之參數做進一步的研究。本文將利用商業套裝軟體FLUENT針對此車廂內之熱流場進行初步分析,輻射熱交換的處理是應用P-1模型,而在太陽日照方面則利用高效率之射線追跡法(Ray Tracing)來模擬太陽射線;然後再根據由國際組織所認證(ISO7730)之舒適指標PMV與PPD理論,來撰寫舒適度判定程式,經由上述兩項之整合來提升整體車廂的舒適品質,並期望能建立一套車廂內空調系統開發之流程。結果顯示車廂內具有人體模型之原始方案,在經由熱流場與PMV舒適指標分析後,發現於人體頭部及腳部之不舒適性與車廂內熱流場之缺失,所以根據熱流場模擬結果擬定了三組改善方案。首先將增加主要入風口之風速,以改善在主駕駛腳部速度過低之問題,之後再改變其角度找出一組較合適之入風口風向,最後將搭配除霧入風口,使車廂內部獲得良好的循環以提升舒適品質。結果顯示當風速提升至3m/s時人體頭部PMV值能有效降至舒適範圍內,而主要入風口角度調整至水平向上0°~20°吹送時也解決了人體原先頭部之不舒適性,將除霧入風口之風速提升與溫度降低後,冷氣能順利到達後方並使超過90%的乘客對此環境感到滿意。所以各改善方案皆能有效的解決車廂內人體不舒適之問題,足以證明此整合系統可以有效的應用在未來車廂內空調系統的開發。


    Nowadays passenger car is an important part of human activity as a daily transportation tool; therefore, safety, thermal comfort, and energy saving, are the automotive engineer’s tasks in improving the automotive technology. Because of the constraints on calculation time and computer hardware, previous numerical researches are limited and seldom using the radiation model since the evaluating standard for the thermal comfort inside a car cabin is not established yet. Most efforts select the constant heat flux to model the solar radiation while neglecting the solar ray orientation. This study intends to apply the radiation model and solar ray parameter to investigate the flow and thermal fields inside the car cabin. P-1 model and Ray Tracing model are chosen as the radiation and the solar load models to calculate the velocity and temperature fields inside a car cabin via a commercial code (FLUENT). Thereafter, a thermal comfort program is prepared based on the ISO7730 code to calculate the PMV and PPD thermal comfort index. By integrating the above efforts, a systematic procedure for evaluating air conditioner inside a car cabin can be furnished to enhance the thermal comfort quality for a passenger car. To validate this scheme, a passenger car is picked to execute both CFD and experimental investigations. A good agreement between them is found by carefully comparing these two outcomes. The numerical simulation for this car with manikins inside the cabin presents that manikin’s head and feet are not comfortable via PMV index analysis.
    Three modified alternatives are set up to fix these defects. At first, the airflow velocity at main inlet is increased to improve low-velocity air stream in driver’s leg. Next, the angle of main inlet was changed to locate a better flow orientation. Finally by combining the flow from defog inlet, a good comfort quality can be achieved. In summary, CFD results show that PMV index at manikin’s head drops to the comfort range when the velocity increased up to 3 m/s. Also, the uncomfortable problem on head portion can be solved for an additional 0°~20° deflection on the air stream from main inlet. With the above three modifications, the cold air can reach the back region of the cabin easily and over 90% of passengers satisfy the thermal comfort. It is demonstrated that this systematic procedure can be utilized for evaluating and improving the thermal comfort index inside the car cabin.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖索引 VIII 表索引 XI 符號索引 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.2.1 車內熱流場及太陽輻射 6 1.2.2 空調舒適度 10 1.3 研究動機與目的 12 第二章 舒適度概論 16 2.1 人體之熱平衡方程式 16 2.2 PMV與PPD之計算 27 第三章 數值分析 33 3.1 統御方程式 33 3.2紊流模式 36 3.2.1 k-ε紊流方程式 36 3.2.2 紊流模式其壁面處理方式 38 3.3熱輻射模型(Radiation Model) 41 3.3.1熱輻射總體傳輸方程式(Radiative Transfer Equation) 41 3.3.2熱輻射模型的選擇 42 3.3.3 P-1輻射模型 43 3.3.4 太陽負載模型(Solar Load Model) 44 3.4 數值計算方法 47 3.4.1離散化(Discretization)方式 49 3.4.2 壓力與速度耦合(Pressure-Velocity Coupling)的處理 51 第四章 數值方法驗證 55 4.1 實驗之建立 55 4.2 實驗之量測 56 4.3 實驗結果 61 4.4 數值模型之建立 64 4.5 數值驗證結果 67 第五章 原始設計之結果與討論 71 5.1 物理模型 72 5.2 入風模式一無人體模型(M1A) 78 5.3 入風模式二無人體模型(M2A) 90 5.4不同入風模式於無人體模型時之結論 96 5.5 入風模式一有人體模型(M1B) 97 5.6 入風模式二有人體模型(M2B) 105 5.7不同入風模式於有人體模型時之結論 111 第六章 改善原始設計舒適度之結果與討論 113 6.1 增加主要入風口之風速 114 6.2 變更主要入風口角度 128 6.3 主要入風口搭配除霧入風口 140 第七章 結論與建議 154 7.1結論 154 7.2建議 157 參考文獻 158 附錄 161 作者簡介 170

    [1] 王建彬,「大陸汽車工業發展分析」,機械月刊,第三十卷,第五期,第94~109頁,民國93年。
    [2] National SAFE KIDS Campaign, “Never Leave Your Child Alone”, Available at: http://www.safekids.org, Accessed 17 February 2005.
    [3] Toru, T., Yoshiichi, O., and Shin-Ichi, T., “Numerical Comfort Simulation for Thermal Environment (part2) an Application of Simulation for the Evaluation of Solar Reduction Glass in a Vehicle Model”, SAE Paper, 2002-01-0235, 2002.
    [4] Cengel, Y. A., Heat Transfer, McGraw-Hill, New York, pp. 514, 1998.
    [5] Joachim, C., “Numerical Simulation of the Flow in a Passenger Compartment and Evaluation of the Thermal Comfort of the Occupants”, SAE Paper 2002-01-1304, 2002.
    [6] Aroussi, A. and Aghil, S., “Characterization of the Flow Field in a Passenger Car Model”, Optical Diagnostics in Engineering, Vol. 4, No. 1, pp. 1-15, 2000.
    [7] Akihiro, F., Kanemaru, J., Hiroshi, N. and Yoshiichi, O., “Numerical Simulation Method to Predict the Thermal Environment Inside a Car Cabin”, JSAE Paper 20014006, 2000.
    [8] Linjie, H. and Taeyoung, H., “Validation of 3-D Passenger Compartment Hot Soak and Cool-Down Analysis for Virtual Thermal Comfort Engineering”, SAE Paper, 2002-01-1304, 2002.
    [9] Raymond, A., “Improved Passenger Thermal Comfort Prediction in the Preprototype Phase by Transient Interior CFD Analysis Including Mannequins”, SAE Paper, 2002-01-0235, 2002.
    [10] Huang, G. Y., “Numerical Simulations in Areas of Fluid Dynamics, Thermal Dynamics and Material Science”, Ph.D Dissertation, National Taiwan University, 2003.
    [11] 吳旻峰,智慧型車廂內微氣候之控制,大葉大學車輛工程系碩士論文,民國92年。
    [12] Chen, H., Chung, W. T. and Liang, S. M.,”Numerical Simulation of Air-Conditioned Flow Filed in an Automobile Cabin”, The 12th National Computational Fluid Dynamics Conference, CFD12-2209, 2005.
    [13] 林志儒,汽車車內外輻射熱流場耦合分析,國立屏東科技大學車輛工程系碩士論文,民國94年。
    [14] 黃鉦盛,空調新舒適指標PMV之應用分析,國立中山大學機械工程研究所碩士論文,民國83年。
    [15] Fanger, P. O., “Thermal Comfort”, McGraw-Hill, New York, NY, 1972.
    [16] ASHRAE, Fundamentals ASHRAE Handbook, 1993.
    [17] 吳照順,單一空間內空氣品質與舒適度之研究,中原大學機械工程研究所碩士論文,民國84年。
    [18] 陳翕琮,空調室內氣流分佈與舒適度之數值模擬分析,中正理工學院兵器系統工程研究所碩士論文,民國88年。
    [19] 游花雲,室內空調氣流波動頻率對冷流效應之影響,國立台北科技大學冷凍與低溫科技研究所碩士論文,民國90年。
    [20] 曹永偉,「舒適空調條件下皮膚表面溫度與氣溫間之相關性」,電機月刊,第13卷,第10期,第272~276頁,民國92年。
    [21] 曹永偉,「人體溫熱感覺指標不舒適指數之探討」,電機月刊,第14卷,第5期,第126~130頁,民國93年。
    [22] Dubios, D. and Dubios, E. F., “A Formula to Estimate Approximate Surface Area, If Height and Weight are Known”, Archives of Internal Medicine, Vol. 17, pp. 863-871, 1916.
    [23] Olesen, B. W., “Thermal Comfort”, Bruel and Kjaer Tech. Rev. No.2, 1982.
    [24] Chan, L. S., “Local Thermal Discomfort”, City University of Hong Kong, Available at: http://personal.cityu.edu.hk/~bsapplec/.
    [25] Olesen, B. W. and Brager, G. S., “A Better Way to Predict Comfort: The New ASHRAE Standard 55-2004”, University of California, Berkeley, Paper OlesenBrager2004_comfort, 2004.
    [26] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
    [27] Fluent 6.1 User’s Guide, Fluent Inc., 2004.
    [28] Van Doormal, J. P. and Rairhby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numer. Heat Transfer, Vol. 7, pp. 147-163, 1984.
    [29] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.

    QR CODE