簡易檢索 / 詳目顯示

研究生: 曾泰祥
Tai-Hsiang Tseng
論文名稱: 大尺寸立體液晶顯示器的視覺舒適範圍評估
Assessing the visual comfort range of a large-size stereoscopic LCD display
指導教授: 孫沛立
Pei-Li Sun
口試委員: 陳鴻興
Hung-Shing Chen
林宗翰
Tzung-Han Lin
溫照華
Chao-hua Wen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 93
中文關鍵詞: 視角差雙眼立體融合範圍視覺舒適度範圍立體顯示器心理視覺實驗
外文關鍵詞: disparity angle, binocular fusion limit, visual comfort range, stereoscopic display, psychovisual experiment
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著顯示技術的進步,3D電影所帶來的視覺震撼,透過立體投影機或大尺寸立體電視,由電影院走入家庭。不過由於觀看3D影像會產生一些不舒適感,因此,大尺寸LCD的3D視覺舒適度是非常值得研究的課題。本研究的目的在於透過一系列的心理物理實驗,找出在不同視差條件下的視覺舒適範圍。根據本研究所獲得的立體舒適視差閾值,將視差過大的立體影像調整至視差較小的視覺舒適範圍內,應該可以降低立體影像的不舒適感。
    基於上述的研究目的,提出六個研究方向。視覺舒適的視差範圍、可同時融合背景與前景的視差範圍、視差範圍受前景或背景位置的影響、將影像背景模糊化,擴大舒適的視差範圍、瞳距的大小是否會影響視覺舒適的視差範圍、不同影像內容的舒適視範圍是否一致。實驗結果顯示:(1).在收斂拍攝的情況下,前景與背景的視角差範圍在1.5度視角內是具有立體感且最舒適的。(2).前景與背景的視角差範圍在大約0.8度左右是人眼可以同時融合背景與前景的視差範圍。(3).視差範圍會受到前景或背景位置的影響而有些微的不同。(4)把背景做輕微的模糊處理是有幫助擴大舒適的視差範圍。(5).小瞳距的受測者舒適的視差範圍是比一般人還要小的。(6).在使用收斂拍攝法的時候,不同影像內容的舒適視範圍可能會有些微的不同。
    由於本論文僅有使用單一型號之立體顯示器,在後續的研究中希望能夠針對不同尺寸之顯示器與不同的觀看距離做相關的探討,希望將來可以找出一個適當的模型用來改良觀看3D立體顯示器的舒適度。


    Display technologies improve greatly in recent years. Large size 3D TVs are now bringing 3D immersive experience from cinemas to our living room. However, many customers still worry about 3D visual discomfort issue. Methods for improving visual comfort of large format 3D TVs therefore are worth studying. The aim of the study is to investigate visual comfort range of a large-size 3D LCD display for depth- image-based algorithms to scale parallax angles into the range.
    The study tried to answer six questions including: What is the visual comfort range? What is the fusion limit? Is the comfort range depended on the parallax of background or foreground? Can the comfort range be extended by background burring? Is the comfort range for small interpapillary-distance observers is different from normal observers? Is the comfort range is image dependent? A series of psycho-visual experiments were conducted to answer those questions. The results show that: (1) For a toed-in 3D image, the visual comfort range is about 1.5o visual disparity angles from a background to a foreground object. (2) The fusion limit is about 0.8 o visual disparity angles. (3) The comfort ranges for different background or foreground parallax is similar. (4) Background blurring would extend the comfort range. (5) The comfort range of small interpapillary-distance observers is smaller than normal observers. (6) The comfort range is image dependent for toed-in 3D images but independent for parallel 3D images.
    The study evaluated 3D visual comfort for only one viewing distance. More viewing conditions should be tested for deriving a versatile model to improve 3D visual comfort of large-size 3D LCD displays.

    摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2研究背景動機與目的 1 1.3研究問題 2 1.4研究限制 3 1.5 相關名詞解釋 4 1.6論文架構 5 第二章 文獻探討 6 2.1立體顯示器 6 2.2 雙眼視差與立體視覺 7 2.3 立體影像成像原理 9 2.4視角的量化計算 13 2.5 立體顯示器的視覺舒適度 14 第三章 研究設計 16 3.1 研究架構 16 3.2 研究對象 17 3.3研究工具 18 3.3.1 測試影像 18 3.3.2 立體顯示器 22 3.4 實驗1:閾值實驗 23 3.4.1 實驗目的 23 3.4.2 研究變項 23 3.4.3 實驗設計 23 3.4.4實驗步驟 25 3.5 實驗2:舒適範圍實驗 26 3.5.1實驗目的 26 3.5.2 研究變項 26 3.5.3實驗設計 27 3.5.4實驗步驟 30 3.6實驗3:融合範圍實驗 32 3.6.1實驗目的 32 3.6.2 研究變項 32 3.6.3 實驗設計 33 3.6.4實驗步驟 37 3.7實驗4:背景模糊實驗 38 3.7.1實驗目的 38 3.7.2 研究變項 38 3.7.3 實驗設計 38 3.7.3.1模糊背景的方式 : 39 3.7.4實驗步驟 43 3.8實驗5:小瞳距觀測者舒適範圍實驗 44 3.8.1實驗目的 44 3.8.2 研究變項 44 3.8.3 實驗設計 44 3.8.4實驗步驟 47 3.9 實驗6:舒適範圍驗證調整 49 3.9.1 研究方法 49 3.9.2 研究變項 49 3.9.3 實驗設計 50 3.9.4實驗步驟 52 第四章 實驗結果分析與討論 53 4.1 實驗1(閾值實驗)之結果與分析 56 4.2 實驗2(舒適範圍實驗)之結果與分析 60 4.3 實驗3(融合範圍實驗)之結果與分析 62 4.4 實驗4(背景模糊實驗)之結果與分析 64 4.5 實驗5(小瞳距觀測者舒適範圍實驗)之結果與分析 65 4.6 實驗6(舒適範圍驗證調整)之結果與分析 66 第五章 結論與建議 69 5.1結論 69 5.2 未來研究建議 70 參考文獻 71 附錄 74

    [1] 華視新聞(2012),「阿凡達後遺症,頭暈想吐耳朵痛」,中華電視股份有限公司, http://news.cts.com.tw/cts/society/201001/201001190392746.html
    [2] 今日新聞(2012),「看《阿凡達》頭暈,男子腦幹出血死亡」,今日傳媒(股)公司,http://www.nownews.com/2010/01/19/11490-2560264.htm
    [3] D.M. Halbfinger (2008). With Theaters Barely Digital, Studios Push 3-D. New York Times, Retrieved March 13.
    [4] O. Berezin (2010). Digital cinema in Russia: Is 3D still a driver for the development of the cinema market? 3D Media 2010.
    [5] B. Frohlich, S. Barrass, B. Zehner, J. Plate and M. Gobel (1999). Exploring geo-scientific data in virtual environments, Proceedings of IEEE on Visualization, 99:169–173.
    [6] C.Ware and G. Franck (1996), Evaluating stereo and motion cues for visualizing information nets in three dimensions, ACM Transactions on Graphics, 15:121–139.
    [7] P. L. Sun, T. H. Tseng and T. Y. Chang and R. M. Luo(2011), Assessing Visual Comfort and Perceptual Image Quality of Stereoscopic 3D TVs, EuroDisplay.
    [8] P. L. Sun, T. H. Tseng and T. Y. Chang and R. M. Luo(2011), Human Factors of Stereoscopic 3D TV under Various Ambient Illuminations, IMID 2011 DIGEST.
    [9] C. C. Huang, H. S. Chen, R. Luo, (2012) , Effect of Ambient light and Display Luminance Level on Stereoscopic TV in 2D/3D Mode, Proceedings of 3D systems and applications, pp. 457-461.
    [10] P. J. H. Seuntiens, (2006). Visual Experience of 3D TV, PhD thesis, Eindhoven University of Technology
    [11] C.D.Wickens and J.G.Hollands, (2002). Engineering Psychology and Human Performance, Pearson Education Taiwan Ltd.
    [12] O.Schreer, P.Kauff andT.Sikora, (2005). Chapter 12: Human Factors of 3D Displays, 3D Videocommunication: Algorithms, Concepts and Real-Time Systems in Human Centred Communication, John Wiley & Sons, Ltd.

    [13] 3DC (2004), 3D Consortium Stereoscopic Safety Guidelines and Recommendations to popularize 3D images, 3DC Safety Guidelines Committee.
    [14] 3DC (2010), Safety Guidelines for Dissemination of Human-friendly 3D, 3DC Safety Guidelines Committee.
    [15] C. Yuan and H. Pan (2011). Stereoscopic 3D Content Depth Tuning Guided by Human Visual Models. SID 2011 Digest, 61(3): 916-919.
    [16] I. P. Howard and B. J. Rogers, (1995). Binocular Vision And Stereopsis, Oxford University Press, ed. 1.
    [17] D. M. Hoffman, A. R. Girshick, K. Akeley and M. S. Banks, (2008). Vergence-Accommodation Conflicts Hinder Visual Performance And Cause Visual Fatigue, Journal of Vision, 8(3):33, 1-30.
    [18] M. Lambooij, W. Ijsselsteijn, M.Fortuin and I. Heynderickx (2009). Visual Discomfort And Visual Fatigue Of Stereoscopic Displays: A Review, Journal of Imaging Science and Technology, 53(3): Article ID 0302011.
    [19] W. J. Tam, F. Speranza, S. Yano, K. Shimono and H. Ono (2011). Stereoscopic 3D-TV: Visual Comfort , IEEE Transactions on Broadcasting, 57( 2):335-346.
    [20] M. Emoto, T. Niida and F. Okano (2005). Repeated Vergence Adaptation Causes The Decline Of Visual Functions In Watching Stereoscopic Television, Journal of Display Technology, 1:328–340.
    [21] J. Hakkinen, M. Polonen, J. Takatalo and G. Nyman (2006). Simulator sickness in virtual display gaming: A comparison of stereoscopic and on-stereoscopic situations. Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services, 6:227–230.
    [22] P. A. Howarth and P. J. Costello (1997). The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system, Displays, 18:107–116.
    [23] M. Lambooij, W. Jsselsteijn, M. Fortuin and I. Heynderickx (2009). Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 53, 1–14.

    [24] M. Menozzi (2000). Visual ergonomics of head-mounted displays. Japanese Psychological Research, 42:213–221.
    [25] K. Ukai (2007). Visual fatigue caused by viewing stereoscopic images and mechanism of accommodation. Proceedings of the First International Symposium on Communication, 1:176–179.
    [26] J. P. Wann and M. Mon-Williams (2002). Measurement of visual aftereffects following virtual environment exposure. In K. M. Stanney (Ed.), Handbook of virtual environments: Design, implementation, and applications. London, UK: Lawrence Erlbaum Associates.
    [27] S. Yano, M. Emoto and T. Mitsuhashi (2004). Two factors in visual fatigue caused by stereoscopic HDTV images. Displays, 25:141–150.
    [28] Z. X. Jin, Y. J. Zhang, X. Wang and T. Plocher (2007). Evaluating the usability of an auto-stereoscopic display. Lecture Notes in Computer Science, 4551, 605.
    [29] T. Yamazaki, K. Kamijo and S. Fukuzumi (1990). Quantitative evaluation of visual fatigue encountered in viewing stereoscopic 3 D displays: Near-point distance and visual evoked potential study. Proceedings of the Society for Information Display, 31:245–247.
    [30] S. Yano, S. Ide, T. Mitsuhashi and H. Thwaites (2002). A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays, 23: 191–201.
    [31] F. L. Kooi and A.Toet, (2004). Visual comfort of binocular and 3D displays,
    Displays 25:99.
    [32] K. Uki and P. A. Howarth, (2008), Visual fatigue caused by viewing stereoscopic motion images: Background, theories and observations, Displays, 29: 106-116.
    [33] H. Sohn, Y. J. Jung, S. Lee, H. W. Park, and Y. M. Ro, (2011). Attention model-based visual comfort assessment for stereoscopic depth perception, Proc. of IEEE DSP Conf., 1-6.
    [34] T. Shiomi, H. Hori, K. Uemoto and M. Miyao (2012) , Comparison of Simultaneous Measurement of Lens Accommodation and Convergence in Natural Vision and 3D Vision, SID 2012 Digest, 1178.

    QR CODE