簡易檢索 / 詳目顯示

研究生: 蔡春鴻
Chun-Hung Tsai
論文名稱: 使用UV奈米壓印法製作抗反射與表面增強拉曼光譜之結構
Fabrication the structures for anti-reflection and surface enhanced spectrum by UV-nanoimprint method
指導教授: 林鼎晸
Ding-Zheng Lin
口試委員: 陳奕帆
周育任
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米壓印技術高深寬比奈米結構物理鍍膜SERS
外文關鍵詞: Nano Imprint, High Aspect Ratio Nanostructures, Physical Coating, SERS
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 2 ABSTRACT 4 致謝 6 目錄 7 圖目錄 10 表目錄 13 第一章 緒論 14 1.1 研究背景與動機 14 1.2 文獻回顧 15 1.2.1 拉曼光譜 15 1.2.2 表面增強拉曼光譜 15 1.2.3 不同種類奈米壓印基板發展 16 第二章 實驗材料與實驗方法 21 2.1 實驗設備 21 2.1.1 實驗室自製接觸角儀 21 2.1.2 實驗室自製下照式UV曝光機台 24 2.1.3 定溫加熱平台 25 2.1.4 微型(積分球)光譜儀系統 25 2.1.5 手持式光功率能量計(Handheld Optical Power and Energy Meter) 26 2.1.6 高真空濺鍍系統(Co-Sputter System) 26 2.1.7 雙電子槍蒸鍍系統B (Dual E-Gun Evaporation System B) 27 2.1.8 顯微拉曼光譜儀系統 27 2.1.9 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope) 28 2.2 實驗材料 29 2.2.1 UV膠 29 2.2.2 脫模劑 30 2.2.3 微奈米結構模具 31 2.2.4 單面易接著膜 31 2.3 實驗流程 32 2.4 實驗方法 33 2.4.1 製作奈米模具並量測接觸角 33 2.4.2 模具抗沾粘前處理並量測抗沾粘處理後接觸角 33 2.4.3 製作奈米壓印基板 34 2.4.4 量測奈米壓印基板穿透率 35 2.4.5 奈米壓印基板鍍膜處理 36 2.4.6 奈米壓印SERS基板前置作業及原理 36 2.4.7 壓印基板SERS量測 37 2.4.8 光譜資料分析 37 第三章 結果與討論 39 3.1 AR1奈米壓印基板結果討論 39 3.1.1 AR1模具抗沾粘處理最佳化參數 39 3.1.2 AR1-IS與平坦結構穿透率比較 41 3.1.3 AR1-IS複製率討論 42 3.2 AR2奈米壓印基板結果討論 43 3.2.1 AR2模具抗沾粘處理最佳化參數討論 43 3.2.2 AR2-IS與平坦結構穿透率比較 46 3.3 AR3奈米壓印基板結果討論 46 3.3.1 AR3模具抗沾粘處理最佳化參數討論 46 3.3.2 AR3-IS重現性與平坦結構穿透率比較討論 47 3.4 不同壓印基板表面奈米結構差異與穿透率比較 49 3.5 不同結構奈米壓印基板SERS效果比較 50 3.5.1 鍍膜條件設定及SERS量測設定 50 3.5.1 AR1-ISS SERS效果討論 51 3.5.1 不同鍍膜參數對於AR2-ISS及AR2-ref SERS效果討論 53 3.5.1 不同鍍膜參數對於AR3-ISS SERS效果討論 55 3.5.1 最佳化SERS基板量測待測物Melamine SERS訊號比較 57 第四章 AR3-ISS特性分析 59 4.1 AR3-ISS訊號均勻度探討 59 4.2 AR3-ISS製程再現性探討 60 4.3 AR3-ISS濃度曲線分析及檢測極限 61 4.3 AR3-ISS 增強因子(EF)探討 62 第五章 結論與未來展望 63 5.1 結論 63 5.2未來展望 65 5.2.1 製作奈米壓印基板UV膠體選用 65 5.2.2 AR3-ISS基板保存度探討 65

1. T. T. X. Ong, E. W. Blanch, and O. A. H. Jones, "Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment," Sci. Total Environ. 720, 137601 (2020).
2. A. Arroyo-Cerezo, A. M. Jimenez-Carvelo, A. González-Casado, A. Koidis, and L. Cuadros-Rodríguez, "Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages – A review," LWT 149, 111822 (2021).
3. Y. Xu, P. Zhong, A. Jiang, X. Shen, X. Li, Z. Xu, Y. Shen, Y. Sun, and H. Lei, "Raman spectroscopy coupled with chemometrics for food authentication: A review," TrAC Trends Anal. Chem. 131, 116017 (2020).
4. D. Cui, L. Kong, Y. Wang, Y. Zhu, and C. Zhang, "In situ identification of environmental microorganisms with Raman spectroscopy," Environ. Sci. Ecotechnology 100187 (2022).
5. H. Yilmaz, D. Yilmaz, I. C. Taskin, and M. Culha, "Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy," Adv. Drug Deliv. Rev. 184, 114184 (2022).
6. M. Fleischmann, P. J. Hendra, and A. J. McQUILLAN, "RAMAN SPECTRA OF PYRIDZNE ADSORBED AT A SILVER ELECTRODE," Chem. Phys. Lett. 26(2), 4 (1974).
7. T.-Y. Liu, H.-H. Wang, K.-T. Tsai, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, Y.-Y. Han, W.-N. Lian, C.-H. Lin, J.-K. Wang, and Y.-L. Wang, "A Nanotechnology Platform Based on Surface-enhanced Raman Spectroscopy for Rapid Detection of Microbes," 16(3), (2012).
8. M. Li, Y. Chen, W. Luo, and X. Cheng, "Demolding force dependence on mold surface modifications in UV nanoimprint lithography," Microelectron. Eng. 236, 111470 (2021).
9. W.-Y. Chang, K.-H. Lin, S.-Y. Yang, K.-L. Lee, and P.-K. Wei, "Fabrication of gold sub-wavelength pore array using gas-assisted hot embossing with anodic aluminum oxide (AAO) template," Microelectron. Eng. 88(6), 909–913 (2011).
10. M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, "Fabrication of high aspect ratio (> 100:1) nanopillar array based on thiol-ene," Microelectron. Eng. 149, 52–56 (2016).
11. M. Zhou, X. Xiong, B. Jiang, and C. Weng, "Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding," Appl. Surf. Sci. 427, 854–860 (2018).
12. M. J. Choi, K. J. Cha, H. W. Kim, M.-H. Na, B.-K. Lee, W. Hwang, and D. S. Kim, "Microchamber/nanodimple polystyrene surfaces constructing cell aggregates fabricated by thermoset mold-based hot embossing," Microelectron. Eng. 110, 340–345 (2013).
13. S.-H. Hong, B.-J. Bae, H. Lee, and J.-H. Jeong, "Fabrication of high density nano-pillar type phase change memory devices using flexible AAO shaped template," Microelectron. Eng. 87(11), 2081–2084 (2010).
14. X. Liu, K. Li, J. Shen, and F. Gong, "Hot embossing of moth eye-like nanostructure array on transparent glass with enhanced antireflection for solar cells," Ceram. Int. 47(13), 18367–18375 (2021).
15. Y. E. Yoo, T. H. Kim, D. S. Choi, S. M. Hyun, H. J. Lee, K. H. Lee, S. K. Kim, B. H. Kim, Y. H. Seo, H. G. Lee, and J. S. Lee, "Injection molding of a nanostructured plate and measurement of its surface properties," Curr. Appl. Phys. 9(2), e12–e18 (2009).
16. L. Peng, B. Sheng, D. Wang, J. Shi, Z. Ni, and Y. Huang, "Soft mold of microlens arrays fabricated by surface self-assembly," Opt. Mater. 99, 109602 (2020).

無法下載圖示 全文公開日期 2025/08/22 (校內網路)
全文公開日期 2025/08/22 (校外網路)
全文公開日期 2025/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE