簡易檢索 / 詳目顯示

研究生: 張凱傑
Kai-Chieh Chang
論文名稱: 熔融紡絲法製作聚醯胺系複合纖維與其形狀記憶性能之研究
Preparation and shape memory properties of melt-spun polyamide/thermoplastic polyurethane fibers
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄭國彬
Kuo-Bin Cheng
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 熔融紡絲聚醯氨形狀記憶複合纖維
外文關鍵詞: Melt-spun, Polyamide, Shape memory, Composite fiber
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗研究熔融紡絲聚醯胺-11(Polyamide-11, PA11)與熱塑性聚氨酯(Polyurethane, TPU)和熱塑性聚脲(Polyurea, PUA),製備成芯鞘型與海島型纖維探討其形狀記憶功效,以PA11此具低吸水率、耐油性好的材料作為包覆層,而熱塑性彈性體作為內層提供形狀記憶效能,熱塑性彈性體主要分為TPU與PUA兩大類,TPU與PUA兩者最大的差別,以化學結構來看在於PUA擁有較多的N-H鍵,可產生較多的氫鍵作用力,使其兩相相容性佳,產生較多的交聯點,有助於形狀記憶效能。
先以熔融共混研究其薄膜形狀記憶功效;本實驗亦藉由溶脹實驗計算出交聯密度,比較TPU與PUA兩系統後發現,PUA系統雖有較高的交聯密度,但在薄膜形狀記憶效能部分,TPU與PUA系統在固定率與回復率部分皆達到90%以上,進而嘗試以熔融紡絲裝置製備PA11/TPU和PA11/PUA複合纖維。
本研究使用雙組份熔融紡絲機搭配芯鞘型與海島型紡嘴,生產出PA11/TPU及PA11/PUA芯鞘型和海島型複合纖維,在熔融紡絲加工中,會給予纖維一定延伸力,可促進分子鏈順向度,因此纖維型態的形狀記憶效能高於薄膜型態,而兩種型態纖維差異處在於海島型纖維中PA11與彈性體接觸面積大於芯鞘型纖維,進而影響其交聯密度,經過三次形狀記憶循環後,PA11/TPU芯鞘型纖維的固定率為 98.5 %,回復率99.6%,PA11/TPU海島型纖維的固定率為99.5%回復率為99.9%,PA11/PUA芯鞘型纖維的固定率為98.4率為99.6 %,PA11/PUA海島型纖維的固定率為98.8 %回復率為99.9 %,先前相關研究大多製備高分子形狀記憶薄膜,本研究成功生產芯鞘型與海島型形狀記憶複合纖維,期望能增加形狀記憶材料應用領域。


Thermoresponsive shape memory fibers were prepared by melt spinning facilities. Polyamide-11 and thermoplastic polyurethane were used to spin into sheath-core and sea-island composite fiber. Polyamide-11, a material with low water absorption and good oil resistance, was used as the outer layer of the fiber. Thermoplastic elastomer was used as the inner layer to provide shape memory performance. Thermoplastic elastomers were mainly divided into two categories: Thermoplastic polyurethane (TPU) and Polyurea (PUA), the mainly difference between two is that PUA system has more N-H bond, which can generate more hydrogen bonding with PA-11 that makes the between phase more compatible, produces more crosslink points which enhance shape memory performance.
Before fiber spinning, shape memory effect in two systems were estimated by hot press melt blending into films. The crosslink density was also calculated by the swelling test. Comparing TPU and PUA system, both systems reached over 90% at either shape memory fix rate and recovery rate, and at the swelling test, PUA system showed a higher crosslink density as predicted. Due to this result, we tried to prepare PA11/TPU and PA11/PUA composite fibers with melt spinning process.
Two-component melt spinning machine with sheath-core and sea-island type nozzle was used to produce composite fiber. In the melt spinning process, during take-up process the as-spun fiber was collected into roll with certain draw ratio, which leads to a better molecularly orientation. In turn improves shape memory effect. After three shape memory cycle, PA11/TPU sheath-core fiber fixation rate is 98.5 %, recovery rate is 99.6 %. PA11/TPU sea-island fiber fixation rate is 99.5%, recovery rate is 99.9%. PA11/PUA sheath-core fiber fixation rate is 98.4 %, recovery rate is 99.6 %. PA11/PUA sea-island fiber fixation rate is 98.8 %, recovery rate is 99.9 %. The research has successfully produced sheath-core fiber and sea-island shape memory composite fiber, and expected to increase the application field of shape memory materials.

第一章 前言 1.1引言 1.2形狀記憶材料發展歷程 1.3形狀記憶高分子的形變機制與主要優點 1.4研究動機 第二章 文獻回顧 2.1形狀記憶之共混系統 2.1.1借助增容劑或交聯劑進行共混 2.1.2多層膜共擠出共混 2.1.3聚合物直接共混 2.2聚醯胺與聚氨酯之共混系統 2.3 形狀記憶纖維熔融紡絲技術 2.3.1芯鞘型複合纖維熔融紡絲 2.3.2 海島型複合纖維熔融紡絲 第三章 實驗 3.1材料 3.2實驗流程 3.3試片製備 3.3.1 PA11/TPU 薄膜製備 3.3.2 PA11/PUA 薄膜製備 3.3.3 PA11/TPU 芯鞘型複合纖維製備 3.3.4 PA11/PUA 芯鞘型複合纖維製備 3.3.5 PA11/TPU 海島型複合纖維製備 3.3.6 PA11/PUA 海島型複合纖維製備 3.4 實驗設備與測試儀器 3.4.1 實驗設備 3.4.2 檢設方法 第四章 結果與討論 4.1官能基特性分析 4.2 熱性質分析 4.2.1 TPU熔融共混PA11對熔點及結晶溫度之影響 4.2.2 PUA熔融共混PA11對熔點及結晶溫度之影響 4.3 微結構分析 4.4 動態黏彈性質分析 4.4.1 薄膜Tanδ之分析 4.4.2 纖維Tanδ之分析 4.5 交聯密度分析 4.5.1 薄膜交聯密度分析 4.5.2 纖維交聯密度分析 4.6 纖維拉伸強度測試 4.7 薄膜形狀記憶行為 4.8 纖維形狀記憶行為 4.8.1 芯鞘型複合纖維形狀記憶 4.8.2 海島型複合纖維形狀記憶 第五章 結論 參考文獻

1. Hu, J., et al., A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 2012. 21(5): p. 053001.
2. Mohr, R., et al., Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(10): p. 3540-3545.
3. Zhao, Q., M. Behl, and A. Lendlein, Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 2013. 9(6): p. 1744-1755.
4. Karger-Kocsis, J. and S. Kéki, Chapter 27 - Recent advances in shape memory epoxy resins and composites, in Multifunctionality of Polymer Composites. 2015, William Andrew Publishing: Oxford. p. 822-841.
5. Meng, Q. and J. Hu, A review of shape memory polymer composites and blends. Composites Part A: Applied Science and Manufacturing, 2009. 40(11): p. 1661-1672.
6. Zhang, W., L. Chen, and Y. Zhang, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer, 2009. 50(5): p. 1311-1315.
7. Leng, J., et al., Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 2011. 56(7): p. 1077-1135.
8. Thakur, S. and J.a.M.o.T.-I.S.M.P.a.t.-w.r.s.m.p.D.s.a.a. Hu, Polyurethane: a shape memory polymer (SMP). Aspects of Polyurethanes; Yilmaz, F., Ed.; InTechOpen: London, UK, 2017: p. 53-71.
9. Senatov, F.S., et al., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2016. 57: p. 139-148.
10. Ohki, T., et al., Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing, 2004. 35(9): p. 1065-1073.
11. Hager, M.D., et al., Shape memory polymers: Past, present and future developments. Progress in Polymer Science, 2015. 49: p. 3-33.
12. Zare, M., et al., Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chemical Engineering Journal, 2019. 374: p. 706-720.
13. Liu, H., et al., Thermostimulative shape memory effect of linear low‐density polyethylene/polypropylene (LLDPE/PP) blends compatibilized by crosslinked LLDPE/PP blend (LLDPE–PP). Journal of Applied Polymer Science, 2011. 122(4): p. 2512-2519.
14. Cui, Y.-Y., et al., Properties of polypropylene/poly (ethylene terephthalate) thermostimulative shape memory blends reactively compatibilized by maleic anhydride grafted polyethylene-octene elastomer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013. 62(13): p. 671-677.
15. Du, J., et al., Novel Blending Methods for Preparation of Shape Memory Polymers. Acta Polymerica Sinica, 2016(1): p. 14-24.
16. Zhang, H., et al., A novel type of shape memory polymer blend and the shape memory mechanism. Polymer, 2009. 50(6): p. 1596-1601.
17. Ajili, S.H., N.G. Ebrahimi, and M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta biomaterialia, 2009. 5(5): p. 1519-1530.
18. Thakur, S. and J. Hu, Polyurethane: a shape memory polymer (SMP). Aspects of Polyurethanes; Yilmaz, F., Ed.; InTechOpen: London, UK, 2017: p. 53-71.
19. Sáenz-Pérez, M., et al., Novel shape-memory polyurethane fibers for textile applications. Textile Research Journal, 2019. 89(6): p. 1027-1037.
20. Chen, S., et al., Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer, 2010. 51(1): p. 240-248.
21. Wong, D., et al. Ablation and combustion characteristics of thermoplastic polyurethane nanocomposites. 2013. AIAA-2013-3862, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San ….
22. Li, M., Q. Guan, and T.J. Dingemans, High-temperature shape memory behavior of semicrystalline polyamide thermosets. ACS applied materials & interfaces, 2018. 10(22): p. 19106-19115.
23. Kim, B.C. and W.Y. Kim, Mechanical and thermal properties of thermoplastic polyurethanes modified with polyamide-11. Journal of Industrial and Engineering Chemistry, 2000. 6(3): p. 182-187.
24. Rashmi, B., C. Loux, and K. Prashantha, Bio‐based thermoplastic polyurethane and polyamide 11 bioalloys with excellent shape memory behavior. Journal of Applied Polymer Science, 2017. 134(20).
25. Kaursoin, J. and A.K. Agrawal, Melt spun thermoresponsive shape memory fibers based on polyurethanes: Effect of drawing and heat‐setting on fiber morphology and properties. Journal of applied polymer science, 2007. 103(4): p. 2172-2182.
26. Qiu, F., et al., Synthesis, characterization, thermal stability and thermo-optical properties of poly (urethane-imide). Sensors and Actuators B: Chemical, 2009. 135(2): p. 449-454.
27. Lu, J., J. Hu, and Y. Liu, Approaches on developing core-spun yarn and fabric with shape memory polymer. 纺织导报 (China textile leader), 2007.
28. 安树林, 海岛纺丝-超细纤维-人造皮革. 纺织学报, 2000. 21(01): p. 48-50.
29. Hwang, W.G., K.H. Wei, and C.M. Wu, Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. Polymer Engineering & Science, 2004. 44(11): p. 2117-2124.
30. Czifrák, K., et al., Poly (ε‐caprolactone) and Pluronic Diol‐Containing Segmented Polyurethanes for Shape Memory Performance. Macromolecular Chemistry and Physics, 2014. 215(19): p. 1896-1907.
31. Zhao, Q., et al., Shape memory polymer network with thermally distinct elasticity and plasticity. Science advances, 2016. 2(1): p. e1501297.
32. Hu, J.L., F.L. Ji, and Y.W. Wong, Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions. Polymer international, 2005. 54(3): p. 600-605.
33. Martino, L., et al., Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. European polymer journal, 2014. 59: p. 69-77.

無法下載圖示 全文公開日期 2026/02/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE