簡易檢索 / 詳目顯示

研究生: 張登翔
Teng-Hsiang - Chang
論文名稱: 改質環氧樹脂/聚己內酯摻合體之三重形狀記憶性質研究
Triple-Shape Memory Behavior of Epoxy/Polycaprolactone Blends Modified with Phenoxy and Halloysite Nanotube
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 邱顯堂
Hsien-Tang Chiu
葉樹開
Shu-Kai Yeh
賴森茂
Sen-Mon Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 形狀記憶高分子環氧樹脂聚己內酯
外文關鍵詞: shape memory polymer
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗研究環氧樹脂(Epoxy, EP)/聚己內酯(Polycaprolacton, PCL)系統之三重形狀記憶行為,其機制為利用EP的玻璃轉移溫度(Tg)和PCL的熔點(Tm)作為兩個相轉移溫度,並藉由其所形成的半互穿網路結構,使之擁有記憶兩種不同形狀的功能,且最後可回復至初始形態。
本研究分別利用苯氧樹脂(Phenoxy)及中空管狀高嶺土(Halloysite nanotube, HNT)來改質EP/PCL的系統,希望可以改善以往回復率及固定率不高之缺點,製備出擁有高回復率及高固定率的形狀記憶高分子。本研究利用Phenoxy中的烴基(OH-)與PCL中的羰基(C=O)產生氫鍵,且藉由兩物質間非晶區互溶,藉以提供在材料內部儲存應力所需的硬鏈段,來可以記憶較多應力,而相對地釋放較多應力,來改善材料回復形狀的性能;而因應相同增強硬段的概念,本研究另外選擇一相較有機物更硬的無機物HNT,來比較其不同改質的特性。
本研究分別探討0、1、5和10 wt%的Phenoxy及HNT對形狀記憶效果的影響。經試驗的結果得出,Phenoxy及HNT的改質皆能有效的改善PCL段形狀記憶回復率至97%並同時保持98%以上之固定率,而共同添加Phenoxy及HNT之EP/PCL則能達到最好的形狀記憶效能,EP段回復率93%及PCL段回復率98%,為到目前為止熱致型三重形狀記憶高分子,最好之效率表現。


Triple-shape memory amine cured EP/PCL blends modified with Phenoxy and HNT were prepared in this study to improve the critical drawback of EP/PCL blends which exhibited not overall excellent shape memory performance, recover ratio and fixity ratio.
An attempt was made to achieve better shape memory (SM) behavior by a hydrogen bonding interaction between the PCL carbonyl group and the Phenoxy hydroxyl group. PCL and Phenoxy are miscible in the amorphous state. Forming the hydrogen bonding may increase the amount of hard segments and enlarge the stored force to recover to the permanent shape. Moreover, Phenoxy also react with epoxide of EP, enhancing the amount of hard segment in the cross-linked network. By the same concepts, this research tries to add comparatively hard inorganic material, HNT, to compare the efficiency of these two modifying methods.
We adjusted the concentrations of Phenoxy and HNT as 0、1、5 and 10 wt%, respectively. To set the two temporary shapes, the glass transition temperature (Tg) of 32oC of the EP and the melting temperature (Tm) of 58oC of PCL were served during the SM cycle. These transition temperatures are easy to reach for the real application. Results show that both Phenoxy and HNT can improve the SM efficiency. The highest recovery ratio reach to 89.0% and 99.9% of two shape by the HNT 5 wt% adding. At the same time, keeping the high shape fixing ratio around 99%.

摘要 Abstract 第一章前言 1.1引言 1.2形狀記憶材料簡介 1.3 研究動機 第二章文獻回顧 2.1環氧樹脂(Epoxy, EP) 2.2 聚己內酯(PCL) 2.2.1 PCL介紹 2.2.2 PCL之應用 2.3苯氧樹脂(Phenoxy) 2.4 中空管狀高嶺土(HNT) 2.4.1 HNT介紹 2.4.2 HNT應用 2.5形狀記憶高分子相關研究 2.5.1 PEO/PMMA系統 2.5.2 EP/PCL系統(一) 2.5.3 EP/PCL系統(二) 2.5.4 EP/PCL系統(三) 2.2 Phenoxy與PCL間相互作用 2.3 Phenoxy與EP間相互作用 第三章、實驗 3.1藥品 3.2實驗流程 3.3實驗試片製備流程 3.3.1 EP/PCL/Phenoxy試片製備 3.3.2 EP/PCL/HNT試片製備 3.3.3 EP/PCL/Phenoxy/HNT試片製備 3.4實驗設備與測試儀器 3.4.1實驗設備 3.4.2檢測方法 4.1熱性質分析 4.1.1 Phenoxy改質後對EP/PCL Tg、Tm及Tc之影響 4.1.2 HNT改質後對EP/PCL Tg、Tm及Tc之影響 4.1.3 TGA 4.2結晶型態及分散影像分析 4.2.1 POM 4.2.2 SEM/TEM影像 4.3 動態黏彈性質分析 4.3.1 Phenoxy改質EP/PCL之黏彈性質分析 4.3.2 HNT改質EP/PCL之黏彈性質分析 4.4力學性質 4.4.1 Phenoxy改質EP/PCL力學性質影響 4.4.2 HNT改質EP/PCL力學性質影響 4.5形狀記憶行為 4.5.1 Phenoxy改質EP/PCL三重形狀記憶效能研究 4.5.2 HNT改質EP/PCL三重形狀記憶效能研究 4.6 應變回復比率(Strain recovery rate)分析 4.6.1 Phenoxy改質EP/PCL應變回復比率分析 4.6.2 HNT改質EP/PCL應變回復比率分析 4.7 P1/H5 性能評估 4.7.1 P1/H5 三重形狀記憶效能 4.7.2 P1/H5 DSC結果 4.7.3 P1/H5 POM結果 第五章、結論 參考文獻

[1] Chen H, Li Y, Liu Y, Gong T, Wang L, Zhou S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polymer Chemistry. 2014;5(17):5168-5182.
[2] Du P, Liu X, Zheng Z, Wang X, Joncheray T, Zhang Y. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Advances. 2013;3(35):15475-15481.
[3] Yu L, Wang Q, Sun J, Li C, Zou C, He Z, et al. Multi-shape-memory effects in a wavelength-selective multicomposite. Journal of Materials Chemistry A. 2015;3(26):13953-13961.
[4] Zhao Q, Behl M, Lendlein A. Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter. 2013;9(6):1744-1755.
[5] Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proceedings of the National Academy of Sciences. 2006;103(10):3540-3545.
[6] Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Materials Science and Engineering: C. 2017;70(Pt 1):586-598.
[7] Lan X, Liu Y, Lv H, Wang X, Leng J, Du S. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Materials and Structures. 2009;18(2):024002.
[8] Leng J, Lan X, Liu Y, Du S. Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science. 2011;56(7):1077-1135.
[9] Ge Q, Luo X, Iversen CB, Mather PT, Dunn ML, Qi HJ. Mechanisms of triple-shape polymeric composites due to dual thermal transitions. Soft Matter. 2013;9(7):2212-2219.
[10] Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Applied Physics Letters. 2005;86(11):114105-114112.
[11] Wang Y, Li J, Li X, Pan Y, Zheng Z, Ding X. Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks. RSC Advances. 2014;4(39):20364-2036476.
[12] Wei H, Yao Y, Liu Y, Leng J. A dual-functional polymeric system combining shape memory with self-healing properties. Composites Part B: Engineering. 2015;83:7-13.
[13] Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. Journal of the Mechanical Behavior of Biomedical Materials. 2016;57:139-148.
[14] Ohki T, Ni Q-Q, Ohsako N, Iwamoto M. Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing. 2004;35(9):1065-1073.
[15] Zhang Y, Wang Q, Wang C, Wang T. High-strain shape memory polymer networks crosslinked by SiO2. Journal of Materials Chemistry. 2011;21(25):9073-9078.
[16] Feng X, Zhang G, Xu B, Jiang H, Bai Q, Li H. Self-healing elastomer assembly towards three-dimensional shape memory devices. RSC Advance. 2015;5(86):70000-70004.
[17] Hong SB, Kim J-G, Nam Y-Y, Lee GH, Yu W-R. Mechanical analysis of carbon fiber shape memory polymer composites. Advances in Structural Engineering. 2015.
[18] Lai SM, Lan YC. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. Journal of Polymer Research. 2013;20(5).
[19] Lee K-S, Chang Y-W. Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/HNT nanotube nanocomposites. Journal of Applied Polymer Science. 2013;128(5):2807-2816.
[20] Li W, Liu Y, Leng J. Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Advance. 2014;4(106):61847-61854.
[21] Zhang ZP, Rong MZ, Zhang MQ. Room temperature self-healable EP elastomer with reversible alkoxyamines as crosslinkages. Polymer. 2014;55(16):3936-3943.
[22] Zhou J, Wang W, Villarroya S, Thurecht KJ, Howdle SM. EP functionalised poly(EPsilon-caprolactone): synthesis and application. Chem Commun (Camb). 2008(44):5806-5808.
[23] Clarkson CM, McCoy JD, Kropka JM. Enthalpy recovery and its relation to shear response in an amine cured DGEBA EP. Polymer. 2016;94:19-30.
[24] Dixit V, Nagpal AK, Singhal R. Influence of Phenoxy modifier on mechanical, electrical and morphological properties of EP/DDS system. International Journal of Plastics Technology. 2010;14(1):38-52.
[25] Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, et al. A novel biobased EP resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. Journal of Materials Chemistry A. 2015;3(43):21907-21921.
[26] Salvekar AV, Zhou Y, Huang WM, Wong YS, Venkatraman SS, Shen Z, et al. Shape/temperature memory phenomena in un-crosslinked poly--caprolactone (PCL). European Polymer Journal. 2015;72:282-295.
[27] Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science. 2010;35(10):1217-1256.
[28] Yin G, Zhang L, Li Q. A convenient method to fabricate porous cross-linked PCL membrane by using dual pore-forming agents. Materials Letters. 2016;181:208-211.
[29] Zheng S, Zhang W, Ma D. Blends of poly (hydroxyether of bisphenol A)(Phenoxy) and poly (ε-caprolactone)(PCL): Effect of acetylation degree of hydroxyls in Phenoxy on miscibility. European Polymer Journal. 1997;33(6):937-942.
[30] Hemberger P, da Silva G, Trevitt AJ, Gerber T, Bodi A. Are the three hydroxyphenyl radical isomers created equal?--The role of the Phenoxy radical. Physical Chemistry Chemistry Physical. 2015;17(44):30076-30083.
[31] Jeong HM, Ahn BK, Kim BK. Miscibility and shape memory effect of thermoplastic polyurethane blends with Phenoxy resin. European Polymer Journal. 2001;37(11):2245-2252.
[32] Wyeth RC, Croll RP, Willows AO, Spencer AN. 1-Phenoxy-2-propanol is a useful anaesthetic for gastropods used in neurophysiology. J Neurosci Methods. 2009;176(2):121-128.
[33] Burridge K, Johnston J, Borrmann T. Silver Nanoparticle–clay composites. Journal of Material Chemistry. 2011;21(3):734-742.
[34] Cao F, Jana SC. Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer. 2007;48(13):3790-3800.
[35] Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, et al. Aggregation and Stabilization of Carboxylic Acid Functionalized HNT Nanotubes (HNT-COOH). The Journal of Physical Chemistry C. 2012;116(34):18230-18235.
[36] Mayoral B, Harkin-Jones E, Khanam PN, AlMaadeed MA, Ouederni M, Hamilton AR, et al. Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Advances. 2015;5(65):52395-52409.
[37] Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y. Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances. 2014;4(1):488-494.
[38] Ratna D, Karger-Kocsis J. Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). Polymer. 2011;52(4):1063-1070.
[39] Torbati AH, Nejad HB, Ponce M, Sutton JP, Mather PT. Properties of triple shape memory composites prEPared via polymerization-induced phase sEParation. Soft Matter. 2014;10(17):3112-3121.
[40] Fejős M, Molnár K, Karger-Kocsis J. EP/Polycaprolactone Systems with Triple-Shape Memory Effect: Electrospun Nanoweb with and without Graphene Versus Co-Continuous Morphology. Materials. 2013;6(10):4489-4504.
[41] Nejad HB, Baker RM, Mather PT. PrEParation and characterization of triple shape memory composite foams. Soft Matter. 2014;10(40):8066-8074.
[42] Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry. 2011;21(26):9419.
[43] Coleman M, Moskala E. FTi. r. studies of polymer blends containing the poly (hydroxy ether of bisphenol A) and poly (ε-caprolactone). Polymer. 1983;24(3):251-257.
[44] Deng S, Zhang J, Ye L, Wu J. Toughening EPoxies with HNT nanotubes. Polymer. 2008;49(23):5119-5127.
[45] Hseih HK, Su CC, Woo EM. Cure kinetics and inter-domain etherification in an amine-cured Phenoxy/EP system. Polymer. 1998;39(11):2175-2183.
[46] Kim BK, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, et al. Polyurethane ionomers having shape memory effects. Polymer. 1998;39(13):2803-2808.
[47] Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on HNT nanotubes-polymer nanocomposite. Progress in Polymer Science. 2014;39(8):1498-1525.
[48] Vahedi V, Pasbakhsh P, Chai S-P. Toward high performance EP/HNT nanocomposites: New insights based on rheological, curing, and impact properties. Materials & Design. 2015;68:42-53.
[49] Zhang F, Zhang Z, Liu Y, Cheng W, Huang Y, Leng J. Thermosetting EP reinforced shape memory composite microfiber membranes: Fabrication, structure and properties. Composites Part A: Applied Science and Manufacturing. 2015;76:54-61.
[50] Rotrekl J, Matejka L, Kapralkova L, Zhigunov A, Hromadkova J, Kelnar I. EP/PCL nanocomposites: Effect of layered silicate on structure and behavior. Express Polymer Letters. 2012;6(12):975-986.
[51]Bothe, Martin. "Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks." Soft Matter 8.4 (2012): 965-972.

無法下載圖示 全文公開日期 2022/01/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE