簡易檢索 / 詳目顯示

研究生: 李其峰
Chi-Feng Lee
論文名稱: 新Genesio渾沌系統之控制與同步及其在FPGA上實現影像加密
Control and Synchronization of New Genesio Chaotic System and its FPGA Implementation on Image Encryption
指導教授: 楊振雄
Cheng-hsiung Yang
口試委員: 陳金聖
Chin-sheng Chen
郭振華
Jen-hwa Guo
郭永麟
Yong-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 98
中文關鍵詞: Genesio系統適應性控制順滑控制耦合控制影像加密
外文關鍵詞: Genesio system, Adaptive control, Sliding mode control, Coupled control, Image encryption
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文透過在原本的Genesio渾沌系統增加一個回授控制,進而產生一個新的Genesio渾沌系統。我們通過應用各種技術來討論此新渾沌系統的動力學行為。這些技術包括相圖、平衡點分析、散度分析、頻譜分析、分歧圖及Lyapunov指數圖,然後在電路板上生成渾沌信號。在控制理論部分,通過應用適應性控制、順滑控制完成同步,以及利用適應性順滑控制新的Genesio渾沌系統。另外我們也利用單向和雙向耦合控制完成此新的Genesio渾沌系統的同步控制。我們也在FPGA板上實現渾沌信號電路,並藉由此渾沌訊號對圖像作安全加密演算法。而且,我們成功利用耦合同步控制在FPGA板上進行圖像解密演算法。在這項研究中,我們將渾沌主系統轉成數位訊號,進而對圖像加密,並利用同步後的從系統對圖像進行解密。


    The chaotic system is proposed in this study by adding a feedback control to the Genesio chaotic system. We discuss the dynamical behaviors of the new Genesio chaotic system by applying various techniques. These techniques include phase portraits, equilibrium point analysis, divergence computing, power spectrum analysis, bifurcation diagrams and Lyapunov exponent diagrams. We also generate the chaotic signals of the new Genesio system on realized circuit board. In control theory, we utilize the adaptive control, the sliding mode control to complete synchronization. We also control the new Genesio chaotic system by the adaptive sliding mode control. Besides, we also use unidirectional and mutual control to make a slave system be synchronized with the new Genesio system. We implement the chaotic signal circuits by using FPGA board and implement these chaotic signals for image secure encryption algorithm. In addition, we successfully utilize the synchronization of the coupled control with the new Genesio system for the image encryption algorithm on FPGA. We change the maser chaotic system to digital signals and use them to encrypt the image and use the digital signals of the synchronized slave system to decrypt the image in this study.

    摘要 I Abstract II 誌謝 III List of Figures VI List of Tables X Chapter 1 Introduction 1 Chapter 2 Nonlinear Dynamics Analysis of the New Genesio Chaotic System 3 2.1 Phase portraits 3 2.2 Equilibrium point analysis 4 2.3 Divergence analysis 4 2.4 Power spectrum analysis 5 2.5 Bifurcation diagram 5 2.6 Lyapunov exponent and Lyapunov dimension 5 2.7 To realize the new Genesio chaotic system on the electronic circuit 6 Chapter 3 Control of the New Genesio Chaotic System by Using Adaptive Sliding Mode Control 24 3.1 Synchronization of the new Genesio chaotic system by using adaptive control 24 3.2 Synchronization of the new Genesio chaotic system by using sliding mode control 26 3.3 Control of the new Genesio chaotic system by using adaptive sliding mode control 31 Chapter 4 Synchronization of Unidirectional and Mutual Coupled of the New Genesio Chaotic System 50 4.1 Synchronization of unidirectional coupled of the new Genesio chaotic system 50 4.2 Synchronization of mutual coupled of the new Genesio chaotic system 52 Chapter 5 Synchronization of Coupled of the New Genesio System and its Implementation for Image Encryption 65 5.1 FPGA introduction 65 5.2 Implement the new Genesio chaotic system by using FPGA 66 5.3 Synchronization of coupled of the new Genesio chaotic system by FPGA implementation 66 5.4 Image encryption 68 5.5 Image decryption 68 Chapter 6 Conclusion 81 References 82

    [1] Lorenz, Edward N. "Deterministic non-periodic flows." Journal of the atmospheric sciences 20.2 (1963): 130-141.
    [2] Hsu, Wen-Teng, et al. "From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication." International Journal of Bifurcation and Chaos 24.12 (2014).
    [3] Mittal, A. K., A. Dwivedi, and S. Dwivedi. "Parameter adaptation technique for rapid synchronization and secure communication." The European Physical Journal Special Topics 223.8 (2014): 1549-1560.
    [4] Hu, Hanping, Yashuang Deng, and Lingfeng Liu. "Counteracting the dynamical degradation of digital chaos via hybrid control." Communications in Nonlinear Science and Numerical Simulation 19.6 (2014): 1970-1984.
    [5] Liu, Shutang, and Fangfang Zhang. "Complex function projective synchronization of complex chaotic system and its applications in secure communication." Nonlinear Dynamics 76.2 (2014): 1087-1097.
    [6] Padmanaban, E., Stefano Boccaletti, and S. K. Dana. "Emergent hybrid synchronization in coupled chaotic systems." Physical Review E 91.2 (2015): 022920.
    [7] Mahmoud, Gamal M., Emad E. Mahmoud, and Ayman A. Arafa. "Passive control of n-dimensional chaotic complex nonlinear systems." Journal of Vibration and Control (2012): 1077546312439430.
    [8] Hung, Meei-Ling, and Her-Terng Yau. "Circuit Implementation and Synchronization Control of Chaotic Horizontal Platform Systems by Wireless Sensors." Mathematical Problems in Engineering 2013 (2013).
    [9] Ruocco, G., and A. Fratalocchi. "Period doubling induced by thermal noise amplification in genetic circuits." Scientific reports 4 (2014).
    [10] Eskov, V. M., et al. "Measurement of Chaotic Dynamics for Two Types of Tapping as Voluntary Movements." Measurement Techniques 57.6 (2014): 720-724.
    [11] Bruin, Henk, et al. "On the chaotic behavior of the primal–dual affine–scaling algorithm for linear optimization." Chaos: An Interdisciplinary Journal of Nonlinear Science 24.4 (2014): 043132.
    [12] Huan, Song-Mei, and Xiao-Song Yang. "Existence of Chaotic Invariant Set in a Class of 4-Dimensional Piecewise Linear Dynamical Systems." International Journal of Bifurcation and Chaos 24.12 (2014).
    [13] Ghaemi, Mostafa, Seyyed Kamal Hosseini-Sani, and Mohammad Hassan Khooban. "Direct adaptive general type-2 fuzzy control for a class of uncertain non-linear systems." IET Science, Measurement & Technology 8.6 (2014): 518-527.
    [14] Kocamaz, Uğur Erkin, Yılmaz Uyaroğlu, and Hakan Kizmaz. "Control of Rabinovich chaotic system using sliding mode control." International Journal of Adaptive Control and Signal Processing 28.12 (2014): 1413-1421.
    [15] Vaidyanathan, Sundarapandian, and Sivaperumal Sampath. "Sliding mode controller design for the global chaos synchronization of Coullet systems." Advances in Computer Science and Information Technology. Networks and Communications. Springer Berlin Heidelberg, 2012. 103-110.
    [16] Wei, Qiang, Xing-yuan Wang, and Xiao-peng Hu. "Adaptive hybrid complex projective synchronization of chaotic complex system." Transactions of the Institute of Measurement and Control 36.8 (2014): 1093-1097.
    [17] Prasad, Lal Bahadur, Hari Om Gupta, and Barjeev Tyagi. "Application of policy iteration technique based adaptive optimal control design for automatic voltage regulator of power system." International Journal of Electrical Power & Energy Systems 63 (2014): 940-949.
    [18] Qiang, Chen, Nan Yu-Rong, and Xing Ke-Xin. "Adaptive sliding-mode control of chaotic permanent magnet synchronous motor extended state observer." 220506-220506.
    [19] Ge, Zheng-Ming, and Yen-Sheng Chen. "Synchronization of unidirectional coupled chaotic systems via partial stability." Chaos, Solitons & Fractals 21.1 (2004): 101-111.
    [20] Ge, Zheng-Ming, and Yen-Sheng Chen. "Adaptive synchronization of unidirectional and mutual coupled chaotic systems." Chaos, Solitons & Fractals 26.3 (2005): 881-888.
    [21] Liu, Xiwei, and Tianping Chen. "Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control." (2015).
    [22] Yu, Hongjie, and Jianhua Peng. "Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems." Chaos, Solitons & Fractals 29.2 (2006): 342-348.
    [23] Tlelo-Cuautle, E., et al. "FPGA realization of multi-scroll chaotic oscillators." Communications in Nonlinear Science and Numerical Simulation 27.1 (2015): 66-80.
    [24] Koyuncu, Ismail, Ahmet Turan Ozcerit, and Ihsan Pehlivan. "Implementation of FPGA-based real time novel chaotic oscillator." Nonlinear Dynamics 77.1-2 (2014): 49-59.
    [25] Wang, Hongjun, et al. "FPGA Design and Applicable Analysis of Discrete Chaotic Maps." International Journal of Bifurcation and Chaos 24.04 (2014).
    [26] Genesio, Roberto, and Alberto Tesi. "Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems." Automatica 28.3 (1992): 531-548.
    [27] Frederickson, Paul, et al. "The Liapunov dimension of strange attractors."Journal of Differential Equations 49.2 (1983): 185-207.
    [28] Di Bernardo, Mario. "An adaptive approach to the control and synchronization of continuous-time chaotic systems." International Journal of Bifurcation and Chaos 6.03 (1996): 557-568.
    [29] Park, Ju H. "Adaptive controller design for modified projective synchronization of Genesio–Tesi chaotic system with uncertain parameters." Chaos, Solitons & Fractals 34.4 (2007): 1154-1159.
    [30] Dadras, Sara, Hamid Reza Momeni, and Vahid Johari Majd. "Sliding mode control for uncertain new chaotic dynamical system." Chaos, Solitons & Fractals 41.4 (2009): 1857-1862.
    [31] Hou, Yi-You, Ben-Yi Liau, and Hsin-Chieh Chen. "Synchronization of unified chaotic systems using sliding mode controller." Mathematical Problems in Engineering 2012 (2012).
    [32] Haeri, Mohammad, and Amir Abbas Emadzadeh. "Synchronizing different chaotic systems using active sliding mode control." Chaos, Solitons & Fractals 31.1 (2007): 119-129.
    [33] Jianwen, Feng, et al. "Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control." Communications in Nonlinear Science and Numerical Simulation 15.9 (2010): 2546-2551.
    [34] Roopaei, Mehdi, Bijan Ranjbar Sahraei, and Tsung-Chih Lin. "Adaptive sliding mode control in a novel class of chaotic systems." Communications in Nonlinear Science and Numerical Simulation 15.12 (2010): 4158-4170.
    [35] Liu, Leipo, et al. "Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity." Nonlinear Dynamics 76.4 (2014): 1857-1865.
    [36] Jawaada, Wafaa, M. S. M. Noorani, and M. Mossa Al-Sawalha. "Anti-Synchronization of chaotic systems via adaptive sliding mode control." Chinese Physics Letters 29.12 (2012): 120505.
    [37] Hahn, Wolfgang. Stability of motion. Vol. 422. Berlin: Springer, 1967.
    [38] Sun, Ke-hui, Yan Wang, and Yan-li Wang. "Hyperchaos behaviors and chaos synchronization of two unidirectional coupled simplified Lorenz systems." Journal of Central South University 21 (2014): 948-955.
    [39] Ge, Zheng-Ming, and Yen-Sheng Chen. "Synchronization of mutual coupled chaotic systems via partial stability theory." Chaos, Solitons & Fractals 34.3 (2007): 787-794.
    [40] Zheng, Hanzhong, Simin Yu, and Xiangqian Xu. "A Systematic Methodology for Multi-Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation." Mathematical Problems in Engineering 2014 (2014).
    [41] Sadoudi, Said, et al. "Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission." EURASIP Journal on Image and Video Processing 2013.1 (2013): 1-18.
    [42] Li, Ping, et al. "FPGA implementation of a coupled‐map‐lattice‐based cryptosystem." International Journal of Circuit Theory and Applications 38.1 (2010): 85-98.
    [43] Diaconu, Adrian-Viorel, Alexandru Costea, and Marius-Aurel Costea. "Color Image Scrambling Technique Based on Transposition of Pixels between RGB Channels Using Knight’s Moving Rules and Digital Chaotic Map." Mathematical Problems in Engineering 2014 (2014).
    [44] Barakat, Mohamed L., et al. "Hardware stream cipher with controllable chaos generator for colour image encryption." Image Processing, IET 8.1 (2014): 33-43.

    無法下載圖示 全文公開日期 2020/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE