簡易檢索 / 詳目顯示

研究生: 張巍瀚
Wei-han Chang
論文名稱: 嵌入式智慧型夾爪與機械手臂之整合
The Integration of Embedded Intelligent Robot Gripper and robotic Manipulator
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 吳忠霖
John-Ling Wu
顏炳郎
Ping-Lang Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 124
中文關鍵詞: 嵌入式系統智慧型夾爪FSMC力量控制滑動感測ArduinoFPGA
外文關鍵詞: embedded control
相關次數: 點閱:203下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研製一台整合微控制晶片之嵌入式智慧型夾爪與五軸機械手臂系統架構,將機器人空間定位與夾爪力量分別獨立控制,並建立兩硬體架構間之數位訊號傳輸溝通橋樑。首先由機械手臂到達空間之定點目標後,啟動夾爪經由力量與位置感測,求得目標物體之物理量如物體長度、接觸力大小、彈性係數,經由智慧型判別其軟硬後,以不傷害夾持物件之夾持力夾取並搬運物體;在搬運過程中機構震動或夾持力不足會導致物體產生滑落。本研究中發展出一套在沒有滑差感測器之條件下,僅使用FSR壓阻式感測器之力量響應分析出滑動訊號,一旦偵測滑動現象,立即將目標物之夾持力提升,可避免搬運過程中物件之掉落。智慧型夾爪硬體方面使用Arduino Nano 3.0為核心之壓力與位置感測控制架構,配合自製之驅動電路板、FSR壓阻式力量感測器、直流馬達與編碼器,達成以嵌入式晶片結合力量位置感測器之智慧型夾爪架構。軟體方面主要由FSMC控制法則來各別設計一個位置與力量控制器,建構軟硬物體之夾持力判別與滑動訊號偵測智慧型決策。機械手臂硬體控制架構是以ALTERA Nios II Embedded Development Kit(以下簡稱Nios II 發展板)為核心,在Nios II發展板內以數位硬體電路實現訊號擷取與輸出控制訊號之功能,數位控制訊號由Nios II發展板送至自製直流馬達驅動電路以驅動各軸馬達。數位電路包含五組光學編碼器信號偵測、四倍頻寬解碼電路、極限開關訊號偵測、五組脈波寬度調變信號輸出、一組夾爪傳輸訊號。軟體部分則是在NiosII之整合式發展介面編寫系統之人機介面、正反運動學方程式計算、點對點運動控制、模糊滑動控制器、連續運動軌跡計算、機械手臂運動之程序控制。


    In this research, an embedded intelligent control gripper is designed and integrated with an ALTERA Nios II embedded control robotic arm. The end-effector position control and force control are designed separately with a signal to communicate for function switching consequently. Firstly, the position control mode is used to move the end-effector of manipulator to arrive the specified Cartesian coordinate, then it is switched into the gripper force control mode. ALTERA Nios II embedded development kit is employed to develop the Mistubishi RV-M2 hardware control architecture. The motor optical encoder decoding, limit switch detecting, pulse width modulation (PWM) generating and 1 bit communication signal with gripper were designed in Nios II hard circuit with HDL(hardware-design-language). Point to point motion control, inverse dynamics of robot arm, continuous motion trajectory control, sequential control and fuzzy sliding mode control soft programs are designed in Nios II interface. Arduino Nano 3.0 development board is chosen as the intelligent gripper control kernel for monitoring the gripper contacted force and position gap based on gripper FSR force sensor and a DC motor encoder feedback signals. The fuzzy sliding mode control is employed to design force and position controllers, respectively. The object stiffness can be constructed based on gripper position and contact force measuring information and an intelligent judge strategy. Then, the object can be handled with appropriate force without damage for pick-and-place operation. In addition, the object slip phenomenon is detected based on the force response of FSR and the contacted force command is regulated on-line to avoid the object falling.

    摘要……. I Abstract… II 誌謝……. III 目錄……. IV 圖目錄…. VIII 表目錄…. XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 8 1.4 論文架構 9 第二章 系統架構 10 2.1 機械手臂 11 2.1.1 機械手臂系統架構 11 2.1.2 Nios II發展板 13 2.1.3 機械手臂 15 2.1.4 馬達驅動電路 16 2.1.5 光耦合PC 817與穩壓IC LM317 18 2.1.6 系統晶片之脈波寬度調變電路(PWM)設計 20 2.1.7 個人電腦 21 2.1.8 NIOSII微處理器之規劃 22 2.2 嵌入式夾爪 26 2.2.1 夾爪設計簡介 26 2.2.2 機械手簡介 27 2.2.3 機械夾爪設計 28 2.2.4 嵌入式夾爪伺服驅動系統 31 2.2.5 壓阻式力量感測器 39 2.2.6 機構分析 41 第三章 機械手臂位置理論分析 43 3.1 連桿參數與座標(Link Parameters and Coordinate) 44 3.2 機械手臂運動學分析 46 3.3 機械手臂反運動學 51 3.3.1 反運動學推導(垂直X-Y平面) 51 3.3.2 反運動學推導 (平行X-Y平面) 53 3.4 梯型速度規劃 56 第四章 控制理論 60 4.1 PID控制器 61 4.2 基本模糊理論 62 4.2.1 模糊集合與隸屬函數 62 4.2.2 基本模糊控制器架構 63 4.3 滑動模式控制 67 4.3.1 滑動模式控制原理 67 4.3.2 滑動模式控制理論基礎 68 4.4 模糊滑動模式控制 71 4.5 控制策略 74 4.5.1 機械手臂之空間點到定點移動 75 4.5.2 夾持物之位置偵測與安全係數 76 4.5.3 夾持物形變量之彈性係數 77 4.5.4 嵌入式夾爪之力量控制 79 4.5.5 嵌入式夾爪之防滑策略 80 4.5.6 Nios II與Nano 3.0之訊號傳輸 82 第五章 實驗結果與討論 85 5.1 以FSMC實現機械手臂空間點對點運動 87 5.1.1 FSMC實驗結果 88 5.1.2 FSMC實驗結果討論 91 5.2 夾爪FSMC與PID力量控制 92 5.2.1 力量響應圖 92 5.2.2 力量響應結果與討論 95 5.3 夾爪FSMC與PID位置控制 96 5.3.1 位置響應圖 97 5.3.2 位置控制結果與討論 99 5.4 彈性係數測試 100 5.4.1 彈性係數圖表 100 5.4.2 彈性係數結果與討論 105 5.5 滑動偵測實驗與防滑策略 106 5.5.1 滑動偵測響應圖 106 5.5.2 滑動實驗結果與討論 108 5.6 整合運動 109 5.6.1 防滑實驗影片 110 5.6.2 智慧型夾取影片 111 5.6.3 智慧型夾取與防滑策略影片 114 5.6.4 整合運動結果與討論 116 第六章 結論與未來展望 117 6.1 結論 117 6.2 未來展望 118 參考文獻 119 作者簡歷 125

    【1】 K. E. Pennywitt, “Robotic tactile sensing”, Byte, Vol. 11, pp. 177-200, 1986.
    【2】 S. J. Lederman, and R. L. Kla tzky, “Hand movements: A window into haptic object recognition”, Cognitive Psychology, pp. 342-368, 1987.
    【3】 S. J. Lederman, and R. L. Klatzky, “Flexible exploration by human and robotic haptic systems”, IEEE International Conference on Engineering in Medicine and Biology Society, pp. 1915-1916, 1990.
    【4】 K. B. Shimoga, “A Survey of Perceptual Feedback Issues in Dexterous Telemanipulation. I. Finger Force Feedback, II. Finger Touch Feedback”, IEEE International Conference on Virtual Reality Annual International Symposium, pp. 263-279, 1993.
    【5】 G. C. Burdea, Forceand touch feedback for virtual reality, John Wiley & Sons, 1996.
    【6】 P. Dario, Tactile sensing for robots: present and future, MIT Press, 1989.
    【7】 D. G. Caldwell, A. Buvsse, and W. Zhou, “Multi-sensor tactile perception for object manipulation/identification”, IEEE International Conference on Intelligent Robots and Systems, pp. 1904 -1911, 1992.
    【8】 J. G. Webster, Tactile sensors for robotics and medicine, John Wiley & Sons, 1988.
    【9】 Darryl P.J. Cotton, Paul H. Chappell, Andy Cranny, Neil M. White and Steve P. Beeby, “A Novel Thick-film Piezoelectric Slip Sensor for a Prosthetic Hand”, IEEE Sensors Journal, Vol. 7, NO.5, May 2007.
    【10】 王信翔, “複材樑之振動控制”, 國立成功大學航空太空工程研究所碩士論文,2006。
    【11】 Barsky M.F., Lindner D.K. and Claus, R.O., “Robot Gripper Control System Using PVDF Piezoelectric Sensors”, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 36, pp. 129-134, 1989.
    【12】 Pandian S.R., Okuda T., Mitani Y., Kurahashi K., and Kawamura S., “A piezoelectric force/force-derivative sensor for robotic applications”, SICE Anunual Conference, pp. 1147 -1150 ,1995.
    【13】 Tani J and Qiu J, “Vibration control of cylindrical shells using distributed piezoelectric sensors and actuators”, IEEE/ASME Intrnational Conference on Advanced Intelligent Mechatronics, 1997.
    【14】 Cotton, D.P.J., Chappell P.H., Cranny A., White N.M., and Beeby S.p., “A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand”, IEEE Sensors Journal, Vol. 7, pp. 752-761, 2007.
    【15】 IIvan Muller, Renato Machado de Brito, and Carlos Eduardo Pereira, “Load Cells in Force Sensing Analysis – Theory and a Novel Application”, IEEE Instrumentation and Measurement Magazine, Vol. 13, pp.15-19, 2010.
    【16】 Li-Ren Lin, and Han-Pang Huang, “Integration of the fuzzy control of the dexterous National Taiwan University(NTU) hand”, IEEE/ASME Trans. on Mechatronics, Vol. 1, pp. 216 - 229 , 1996.
    【17】 Jun Ueda, Atsutoshi Ikeda, and Tsukasa Ogasawara,”Grip-Force control of an elastic object by Vision-based Slip-Margin feedback during the Incipient Slip”, IEEE Trans. on Robotics, Vol. 21, pp. 1139-1147, 2005.
    【18】 Hitoshi Arisumi, Kazuhito Yokoi, and Kiyoshi Komoriya, “Casting manipulator -midair control of gripper by impulsive force”, Intelligent Robots and Systems, Vol. 1, pp.291-298, 1999.
    【19】 Eniko T. Enikov, Lyubomir L. Minkov, and Scott Clark, “Microassembly Experements with Transparent Electrostatic Gripper Under Optical and Vision-Based Control”, Vol. 52, pp.1005-1012, 2005.
    【20】 Gourab Sen Gupta, Subhas Chandra Mukhopadhyay, Christopher H. Messom, and Serge N. Demidenko, “Master-Slave Control of a Teleoparated Anthropomorphic Robotic Arm with Gripping Force Sensing”, Vol.3, pp. 2203-2208, 2205.
    【21】 Jonathan Becedas, Ismael Payo, and Vicente Feliu, “Two-Flexible-Fingers Gripper Force Feedback Control System for Its Application as End Effector on 6-DOF”, IEEE Trans. on Robotics, Vol.27, pp. 599-615, 2011.
    【22】 Joseph M. Romano, Kaijen Hsiao, G‥unter Niemeyer, Sachin Chitta, and Katherine J. Kuchenbecker, “Human-Inspired Robotic Grasp Control with Tactitle Sensing”, Vol.27, pp.1067-1079, 2011.
    【23】 Neville Hogan, “Impedance Control of Industrial Robots”, Robotics & Computer-Integrated Manufacturing, Vol.1, No.1, pp.97-113, 1984.
    【24】 Matthew T. Mason, “Compliance and Force Control for Computer controlled Manipulators,” IEEE Transactions on systems, Vol.11, SMC-11, No.6, June 1981.
    【25】 Shimoga B. Karunakar, and Andrew A. Goldeuberg, “Contact Stability in Model-Based Force Control Systems of Robot Manipulators”, IEEE Trans. on Robotics and Automation, 1989.
    【26】 廖義銘, ”應用模糊理論於機械手臂混合式位置/力量控制之研究”, 碩士論文,國立台灣科技大學纖維及高分子工程系,2001
    【27】 Sooyong Lee,and Asada, H.H., “A perturbation/correlation method for force guided robot assembly”, IEEE Trans. on Robotics and Automation, Vol.15 , pp.764 – 773, 1999.
    【28】 Yu Guoqing, Sha Zhanyou, and An Guochen, “Application of Digitally Controlled Potentiometers in the Intelligent Sensor’s Measure and Control System”, International Conference on Electronics Measurement and Instruments, pp. 440-443, 2007.
    【29】 ALTERA, “DE2-115 User Manual”, ALTERA Corporation, 2010.
    【30】 喬執中,“力量控制於機械手臂運動之應用”, 碩士論文國立中央大學 機械工程研究所, 2001。
    【31】 SHARP, “PC-817 Series High Density Mounting Type Photocoupler”, SHARP Corporation.
    【32】 National Semiconductor, “LM117/LM317A/LM317 3-Terminal Adjustable Regulator”, February 25, 2011.
    【33】 SOPC設計實務,全華科技圖書股份有限公司,2006.
    【34】 Verilog FPGA晶片設計,全華圖書股份有限公司,2008.
    【35】 R. C. Goertz, and R. Thompson, “Electronically controlled manipulator”, Nucleonics, pp. 46-47, 1954.
    【36】 P. Michelman, ”Precision object manipulation with a multifingered robot hand,” IEEE Trans. on Robotics and Automation, Vol. 14, No. 1, pp. 105-113, 1998.
    【37】 J. K. Salisbury, and J. J. Craig, “Articulated hands: force control and kinematic issues”, Int. J. Robot. Res., Vol. 1, No. 1, pp. 4–17, 1982.
    【38】 B. M. Jau, “Dexterous telemanipulation with four fingered handsystem”, IEEE International Conference on Robotics and Automation, pp. 338–343, 1995.
    【39】 S. J. Lederman, and R. L. Kla tzky, “Hand movements: A window into haptic object recognition”, Cognitive Psychology, pp. 342-368, 1987.
    【40】 R. Tomovic, G. Bekey, and W. Karplus, “A strategy for grasp synthesis with multifingered robot hands”, IEEE International Conference on Robotics and Automation, pp. 83-89, 1987.
    【41】 L. R. Lin, and H. P. Huang, “Mechanism design of a new multifingered robot hand,” IEEE International Conference on Robotics and Automation, pp. 1471-1476, 1996.
    【42】 T. Pham, and W. B. Heginbotham, Robot Grippers, IFS Ltd, UK, 1986.
    【43】 Z. Doulgeri and N. Fahantidis, “Picking up flexible pieces out of a bundle” , IEEE Robotics and Automation Magazine, Vol. 9, No. 2, pp. 9-19, 2002.
    【44】 H. L. Stewart, and Philbin, Pneumatic and Hydraulics, Bobbs-Merrill Company, 1984.
    【45】 Shayang, “直流馬達DC Carbon-brush motors IG-22GM 01&02 TYPE”, Shayang Corporation.
    【46】 http://arduino.cc/en/Main/ArduinoBoardNano
    【47】 TEXAS INSTRUMENTS, “L293, L293D Quadruple Half-H DRIVERS”, TEXAS INSTRUMENTS Corporation, June 2002.
    【48】 http://tw.myblog.yahoo.com/jw!MOmm3oyBAAUZNciLUyP_khI2/article?mid=9283&prev=9284&l=f&fid=15
    【49】 INTERLINK ELECTRONICS, “FSR Force Sensing Resistor Integration Guide and Evaulation Parts Catalog”, INTERLINK ELECTRONICS Coporation.
    【50】 喬執中,“力量控制於機械手臂運動之應用”,碩士論文,國立中央大學 機械工程研究所, 2001。
    【51】 黃安橋教授,“非線性系統上課講義 ”,國立台灣科技大學機械工程研究所。
    【52】 Gonzalez J. J., and Widmann G. R., “Force commanded impedance control scheme for robots with hard nonlinearities”, IEEE Trans. on Control System Technology, Vol. 3, No.4, pp.398-408, 1995.
    【53】 Anderson R. J., and Spong M. W., “Hybrid impedance control of robotic manipulators”, IEEE Trans. on Robotics and Automation, Vol. 4, No.5, pp.549-556, 1988.
    【54】 G. Ferretti, G. Magnani, and P. Rocco, “Toward the Implementation of Hybrid Position/Force Control in Industrial Robots”, IEEE Transactions on Robotics and Automation, Vol. 13, No. 6, December 1997.
    【55】 Ferretti G., Magnani G. A., and Rocco P., “Impedance control for elastic joints industrial manipulators”, IEEE Trans. on Robotics and Automation, pp.488-498, 2004.

    QR CODE