簡易檢索 / 詳目顯示

研究生: 林啟能
Chi-Neng Lin
論文名稱: 以熱氧化法製備摻鈷氧化鋅奈米線之特性分析
Characterization and analysis of Co doped ZnO nanowires prepared by thermal oxidation
指導教授: 趙良君
Liang-chiun Chao
口試委員: 黃鶯聲
Ying-sheng Huang
李奎毅
Kuei-yi Lee
黃柏仁
Bohr-ran Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 鈷氧化鋅射頻磁控濺鍍法熱氧化法
外文關鍵詞: Co doped ZnO, RF magnetron sputtering, thermal oxidation
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以熱氧化法成長出摻鈷的氧化鋅奈米線結構,以磁控濺鍍法先沉積純鋅膜與摻鈷的鋅薄膜兩種,實驗結果發現純鋅膜經熱氧化後會形成奈米針結構,而有摻雜鈷的鋅膜在熱氧化後會轉變為奈米線結構,其結構上受到摻雜有很大的影響,由EDS量測結果可得知鈷元素順利的摻雜進入氧化鋅當中,其平均鈷濃度為1原子百分比(1 at.%),由XRD 量測可知其繞射面有(100)、(002)及(101),且(101)此繞射峰經過摻雜後有微量的往大角度偏移,原因為鈷離子取代鋅離子位置後晶格上會因此微量的萎縮,但其結構上依舊為氧化鋅六方最密堆積纖鋅礦結構,而拉曼頻譜在摻雜過鈷元素後,明顯的多了690 cm-1 的局部紊亂振動模態,此模態與鈷摻雜後其結構相關,PL分析於室溫下其近能隙發光有很良好的UV 範圍發光波峰位於3.287 eV,由變溫PL分析其機制為自由能階-束縛能階躍遷所輻射的光,TEM圖中可以看出受到摻雜的氧化鋅奈米線其晶格排列上變得較紊亂,結晶性受到了摻雜而較差。


Cobalt doped ZnO nanowires have been prepared by thermal oxidation of metallic Zn-Co films at 450C for three hours. Comparing with ZnO nanowires obtained from thermal oxidation of Zn films, the ZnO:Co nanowire exhibit a larger diameter. EDS analysis shows that the concentration of Co is ~ 1 at.%. XRD analysis shows that ZnO:Co has a hcp structure while the diffraction peak of (101) shifts to larger angle. The reduced lattice constant is due to the replacement of Zn by Co which has a smaller ionic radius. Raman spectroscopy analysis shows a Raman peak at 690 cm-1, which is the disorder local vibration mode due to the incorporation of Co into ZnO matrixes. Room temperature photoluminescence shows strong UV emission at 3.287 eV with an activation energy of 134 meV. Variable temperature PL study shows that the UV emission is due to free to bound transition. The origin of the bound state is likely due to the presence of stacking faults that act as acceptors.

中文摘要......................................................................I 英文摘要.....................................................................II 致謝........................................................................III 圖目錄.......................................................................VI 第一章 緒論...................................................................1 1-1前言......................................................................1 1-2研究動機..................................................................2 第二章 理論基礎...............................................................5 2-1 濺鍍理論.................................................................5 2-1-1 電漿..................................................................5 2-1-2 濺鍍現象..............................................................5 2-1-3 射頻濺鍍系統 (Radio-Frequency Sputtering Deposition)..................6 2-1-4 磁控濺鍍系統 (Magnetron Sputtering Deposition)........................8 2-3 文獻回顧.................................................................9 第三章 實驗步驟與研究方法....................................................25 3-1 實驗設備,條件及流程....................................................25 3-2特性分析儀器.............................................................28 3-2-1 場發射掃描式電子顯微鏡 (Field emission scanning electron microscopy; FE-SEM)......................................................................28 3-2-2能量散射光譜儀(Energy dispersive spectrometer;EDS or EDX )...........29 3-2-3 X-ray 繞射儀(X-ray diffractometer)...................................30 3-2-4 拉曼光譜儀(micro-Raman spectroscopy).................................31 3-2-5 穿透式電子顯微鏡 (Transmission electron microscope ; TEM)............32 3-2-6 光激發螢光光譜 (Photoluminescnce ; PL)...............................34 第四章 實驗結果與討論........................................................38 4-1 場發射掃描式電子顯微鏡分析(FE-SEM)......................................38 4-2 能量散射光譜儀分析(EDS).................................................43 4-3 X-ray繞射頻譜分析(XRD)..................................................44 4-4 拉曼頻譜(Raman).........................................................46 4-5 穿透式電子顯微鏡(TEM)...................................................48 4-6 光激發螢光光譜分析與變溫PL分析..........................................50 第五章 結論與未來研究方向....................................................54 5-1 結論....................................................................54 5-2 未來研究方向............................................................55 參考文獻.....................................................................56

[1] R. Fledering, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag and
L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature~London, Vol. 402, pp. 787-789, 1999.
[2] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D.
Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure ,” Nature ~London, Vol. 402, pp. 790-792, 1999.
[3] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” Science, Vol. 287, pp.1019-1022, 2000.
[4] K. Ueda, H. Tabata and T. Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films,” Appl. Phys. Lett., Vol. 79, pp. 988-990, 2001.
[5] S. Deka, R. Paricha and P. A. Joy, “Synthesis and Ferromagnetic Properties of Lightly Doped Nanocrystalline Zn1-xCoxO ,’’ Chem. Mater, Vol. 16, pp. 1168-1169, 2004.
[6] C. Song, F. Zeng, K. W. Geng, X. B. Wang, Y. X. Shen and F. Pan, “The magnetic properties of Co-doped ZnO diluted magnetic insulator films prepared by direct current reactive magnetron co-sputtering,” J. Magn. Magn. Mater, Vol. 309, pp. 25-30, 2007.
[7] J. B. Cui and U. J. Gibson, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays,” Appl. Phys. Lett., Vol. 87, pp. 133108-1 – 133108-3, 2005.
[8] T. L. Phan, R. Vincent, D. Cherns, N. H. Dan, S. C. Yu, “Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods,” Appl. Phys. Lett., Vol. 93, pp. 082110-1 – 082110-3, 2008.
[9] C. Y. Lin, W. H. Wang, C. S. Lee, K. W. Sun and Y. W. Suen, “Magnetophotoluminescence properties of Co-doped ZnO nanorods,” Appl. Phys. Lett., Vol. 94, pp.151909-1 - 151909-3, 2009.
[10] C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim and J. S. Ha, “Sol–gel synthesis of sub-50nm ZnO nanowires on pulse laser deposited ZnO thin films,” Appl. Surf. Sci., Vol. 253, pp.1758-1761, 2006.
[11] B. Liu and H. C. Zeng, “Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process,” J. Am. Chem. Soc., Vol. 126, pp. 16744-16746, 2004.
[12] Gregory J. Exarhos and Shiv K. Sharma, “Influence of processing variables on the structure and properties of ZnO films,” Thin Solid Films, Vol. 270, pp.27-32, 1995.
[13] 楊明輝,工業材料雜誌,179 期 (2000) 34-44頁.

[14] S. J. Pearton, D. P. Norton, K. Ip and Y. W. Heo, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, Vol. 22, pp. 932-948, 2004.
[15] W. Shan, B. D. Little, A. J. Fischer, J .J. Song, B. Goldenbrg, W. G. Perry, M. D. Bremser and R. F. Davis, “Binding energy for the intrinsic excitons in wurtzite GaN,” Phys. Rev. B, Vol. 54, pp. 16369-16372, 1996.
[16] Anderson Janotti and Chris G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B, Vol. 76, pp. 165202-1 – 165202-22, 2007.
[17]D.M. Mattox, J. Vac. Sci. Technol, A7, 1105, 1989.
[18]吳森鴻, 國立中央大學光電科學研究所碩士論文, 2003.
[19]羅吉宗, 薄膜科技與應用, 修訂二版, 2009, 2-25頁.
[20] Kwang Joo Kim and Young Ran Park, “Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxO alloys,” Appl. Phys. Lett., Vol. 81, pp. 1420-1422, 2002.
[21] Kenji Ueda, Hitoshi Tabata and Tomoji Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films,” Appl. Phys. Lett., Vol. 79, pp. 988-990, 2001.
[22] J. Diouri, J. P. Lascaray and M. El Amrani, “Effect of the magnetic order on the optical-absorption edge in Cd1-xMnxTe,” Phys. Rev. B, Vol. 31, pp. 7995-7999, 1985.
[23] R. B. Bylsma, W. M. Becker, J. Kossut, U. Debska and D. Yoder-Short, “Dependence of energy gap on x and T in Zn1-xMnxSe: The role of exchange interaction,” Phys. Rev. B, Vol. 33, pp. 8207-8215, 1986.
[24] Y. R. Lee, A. K. Ramdas and R. L. Aggarwal, “Energy gap, excitonic, and ‘‘internal’’ Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B, Vol. 38, pp. 10600-10610, 1988.
[25] Y. D. Kim, S. L. Cooper, M. V. Klein and B. T. Jonker, “Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn(Mn,Fe,Co)Se,” Phys. Rev. B, Vol. 49, pp. 1732-1742, 1994.
[26] K. Samanta, P. Bhattacharya and R. S. Katiyar, “Optical properties of Zn1−xCoxO thin films grown on Al2O3 (0001) substrates,” Appl. Phys. Lett., Vol. 87, pp. 101903-1 - 101903-3, 2005.
[27] Trinh Thi Loan, Nguyen Ngoc Long and Le Hong Ha, “Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method,” J. Phys. D: Appl. Phys., Vol. 42, pp. 065412-1 – 065412-7, 2009.
[28] C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik and V. M. Naik, “Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism,” J. Phys.: Condens. Matter, Vol. 19, pp. 026212-1 – 026212-9, 2007.
[29] J. Serrano, A. H. Romero, F. J. Manjn, R. Lauck, M. Cardona and A. Rubio, “Pressure dependence of the lattice dynamics of ZnO: An ab initio approach,” Phys. Rev. B, Vol. 69, pp. 094306-1 – 094306-14, 2004.
[30] Ohtsuka H, Tabata T, Okada O, Sabatino L M F. and Bellussi G, “A study on selective reduction of NOx by propane on Co-Beta,” Catal. Lett., Vol. 44, pp. 265-270, 1997.
[31] K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso and C. Rettori, “Raman scattering studies in dilute magnetic semiconductor Zn1−xCoxO,” Phys. Rev. B, Vol. 73, pp. 245213-1 – 245213-5, 2006.
[32] K. A. Griffin, A. B. Pakhomov, C. M.Wang, S.M. Heald and K. M. Krishnan, “Cobalt-doped anatase TiO2: A room temperature dilute magnetic dielectric material,” J. Appl. Phys., Vol. 97, pp. 10D320-1 – 10D320-3, 2005.
[33] H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki and Y. Kawazoe, “Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles,” Phys. Rev. B, Vol. 69, pp. 125219-1 – 125219-6, 2004.
[34] J-J. Gu, L-H. Liu, H-T. Li, Q. Xu and H-Y. Sun, “Annealing effects on structural and magnetic properties of Co-doped ZnO nanowires synthesized by an electrodeposition process,” J. Alloys Compd, Vol. 508, pp. 516–519, 2010.

[35] Q. X. Zhao, M. Willander, R. E. Morjan, Q-H. Hu and E. E. B. Campbell, “Optical recombination of ZnO nanowires grown on sapphire and Si substrates,” Appl. Phys. Lett., Vol. 83, pp. 165-167, 2003.
[36] K. A. Dhese, P. Devine, D. E. Ashenford, J. E. Nicholls, C. G. Scott, D. Sands and B. Lunn, “Photoluminescence and P-type conductivity in CdTe:N grown by molecular beam epitaxy,” J. Appl. Phys., Vol. 76, pp. 5423-5428, 1994.
[37] FEI Company, “Tecnai G2 20” , http://www.fei.com/.
[38] D. K. Schroder, “Semiconductor Material and Devic Characterization,” 2nd edition, J. Wiley and Sons, New York, 1998.
[39] Simas Rackauskas, Albert G. Nasibulin, Hua Jiang, Ying Tian, Gintare Statkute, Sergey D. Shandakov, Harri Lipsanen and Esko I. Kauppinen, “Mechanistic investigation of ZnO nanowire growth,” Appl. Phys. Lett., Vol. 95, pp. 183114-1 – 183114-3, 2009.
[40] Tae-Won Kim, Tadashi Kawazoe, Shunsuke Yamazaki, Motoichi Ohtsu and Takashi Sekiguchi, “Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires,” Appl. Phys. Lett., Vol. 84, pp. 3358-3360, 2004.
[41] H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys.: Condens. Matter, Vol. 16, pp. S5653-S5660, 2004.
[42] Xuefeng Wang, Jianbin Xu, Xiaojiang Yu, Kun Xue, Jiaguo Yu and Xiujian Zhao, “Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1−xCoxO (0<x<0.6),” Appl. Phys. Lett., Vol. 91, pp. 031908-1 – 031908-3, 2007.
[43] C. L. Du, Z. B. Gu, Y. M. You, J. Kasim, T. Yu, Z. X. Shen, Z. H. Ni, Y. Ma,
G. X. Cheng and Y. F. Chen, “Resonant Raman spectroscopy of (Mn,Co) - codoped ZnO films,” J. Appl. Phys., Vol. 103, pp. 023521-1 –023521-4, 2005.
[44] The-Long Phan, Roger Vincent, David Cherns, Nguyen Huy Dan and
Seong-Cho Yu, “Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods,” Appl. Phys. Lett., Vol. 93, pp. 082110-1 – 082110-3, 2008.
[45] R. P. Wang, G. Xu and P. Jin, “Size dependence of electron-phonon coupling in ZnO nanowires,” Phys. Rev. B, Vol. 69, pp. 113303-1 – 113303-4, 2004.

無法下載圖示 全文公開日期 2013/06/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE