簡易檢索 / 詳目顯示

研究生: 黃彥霖
Yan-Lin Huang
論文名稱: 敏化效應對SUPER304H不銹鋼管潛變壽命之影響
The effect of Sensitization on the creep life of SUPER304H stainless steel tubes
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 開物
Wu Kai
郭俞麟
Yu-Lin, Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: SUPER304H敏化潛變壽命
外文關鍵詞: SUPER304H, Sensitization, Creep life
相關次數: 點閱:294下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究藉由兩種來源之SUPER304H不銹鋼管,經700 ℃,0小時 ~ 700小時共6種不同持溫時間敏化熱處理後,分別觀察試片顯微組織、破斷區域,試驗其敏化程度、硬度狀況、抗拉強度、伸長率以及抗潛變性能,透過Larson-Miller關係式,計算出敏化影響試片潛變壽命之程度。
      實驗結果顯示,不論敏化程度為何,經潛變試驗後之試片幾乎皆呈現溝渠式結構,導致試片破斷樣式呈脆性破斷。未經敏化熱處理樣品敏化程度極低,有敏化熱處理之敏化程度相對較高。試片之硬度值幾乎與敏化程度無關連,但是伸長率則有下降趨勢。潛變壽命在試片承受低應力狀態下受敏化程度影響程度相當顯著,在高應力狀態下相對較低。


      In this study, SUPER304H stainless steel tubes from two sources are sensitized at 700 ℃ in 6 various exposure durations from 0 to 700 hours.
    Microstructure analysis, fracture surface investigation, hardness and mechanical properties tests are performed. Moreover, the effect of sensitization on the high temperature creep resistance of the steels is explored based on the Larson-Miller relationship.
      The experimental results show that ditch structure observed from the samples after creep test, which leads to brittle fracture. Samples without heat treatment have light sensitization effect. However, severe for the samples with heat treatment. Hardness almost has nothing to do with sensitization, but elongation decrease. Sensitization has great influence on the creep life while under low stress condition. By contrast, in higher stress environment, sensitization has little on the creep life.

    第一章 前言 5 第二章 文獻回顧 6 2.1 超臨界發電鍋爐材料演進歷程 6 2.2 先進超臨界不銹鋼材料特性 13 2.2.1 物理性質 13 2.2.2 組成成分 15 2.2.3 敏化 16 2.2.4 蒸汽側氧化 17 2.2.5 火側腐蝕 19 2.2.6 晶粒尺度 21 2.2.7 機械性質 21 2.2.8 金相組織與析出相 24 2.3 潛變壽命評估理論 30 2.3.1 潛變曲線 30 2.3.2 潛變壽命評估方法 33 2.4 超臨界發電鍋爐材料使用經驗 34 第三章 試驗流程與方法 37 3.1 試驗材料與流程 37 3.2 熱處理流程 41 3.3 顯微組織觀察 42 3.4 硬度試驗 44 3.5 敏化試驗 45 3.6 缺口型拉伸試驗 46 3.7 單軸式潛變試驗 48 3.8 掃描式電子顯微鏡觀察 49 第四章 結果與討論 50 4.1 顯微組織 50 4.2 硬度試驗 59 4.3 缺口型拉伸試驗 61 4.4 敏化試驗 65 4.5 單軸式潛變試驗 67 第五章 結論 79 參考文獻 81 附錄、實驗結果照片 87

    [1]  陳燦堂,「新大林一號機105年8月水壓試驗Short Piece洩漏肇因分析」,技術服務報告,第22~23頁,2017。
    [2]  台灣電力股份有限公司,「台灣電力公司 永續報告書」,第57頁,臺北(2017)。
    [3]  F. Masuyama, “Alloy Development and Material Issues with Increasing Steam Temperature.”, “Advances in Materials Technology for Fossil Power Plants, Proceedings from the Fourth International Conference.” ASM International, Materials Park, OH, and EPRI 1011381, EPRI, Palo Alto, CA, 2005.
    [4]  J. Shingledecker, “Review of Industry Experience with Advanced Austenitic Stainless Steels,” Presentation at the EPRI Conference on Welding and Fabrication Technology for New Power Plants, Fort Myers, FL, June 2009.
    [5]  薛人豪,「赴德研習高效率超超臨界鍋爐之發展」,公務出國報告,第19 ~ 21頁、32頁,2009。
    [6]  ASME Code for Pressure Piping, B31, "Power Piping", ASME, New York, NY (2016).
    [7]  G. Gierschner, “COMTES700-on track towards the 50plus power plant”,presentation, New Build Europe 2008, Dusseldorf, E.ON Engineering Gmbh, 2008.
    [8]  J. Shingledecker, “Review of Industry Experience with Advanced Austenitic Stainless Steels,” Presentation at the EPRI Conference on Welding and Fabrication Technology for New Power Plants, Fort Myers, FL, June 2009.
    [9]  J. F. Henry and C. T. Ward, “Lessons from the Past: Materials-Related Issues in the Ultrasupercritical Boiler, Eddystone Unit 1,” Energy Materials, Vol. 1, No. 2 (2006).
    [10]  State of Knowledge for Advanced Austenitics. EPRI, Palo Alto, CA: 2009. 1020241.
    [11]  Nippon Steel & Sumitomo Metal Corporation (NSSMC) web page: http://www.tubular.nssmc.com/product-services/specialty-tube/product/
    [12]  ASME Boiler and Pressure Vessel Code, Section II (Materials), Part D, Properties, 2010 Edition with 2011 Addenda, ASME, New York, NY (2011).
    [13]  E. Folkhard, Welding Metallurgy of Stainless Steel, Springer-Verlag/Wien, 1988.
    [14]  H. Matsuo, Y. Nishiyama, Y. Yamadera, “Steam Oxidation Property of Fine-grain Steels.” In Proceedings of the Fourth International Conference on Advances in Materials for Fossil Power Plants, eds., R. Viswanathan, D. Gandy, and K. Coleman, pp. 441–450, ASM International, Materials Park, OH, 2005.
    [15]  H. Hack, G. Stanko, “Update on Fireside Corrosion Resistance of Advanced Materials for Ultra-Supercritical Coal-Fired Power Plants.” Paper presented at the 31st International Technical Conference on Coal Utilization and Fuel Systems, Pittsburg, PA (September 2006).
    [16]  ASTM A213-A213M-11a: “Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes,” ASTM International, West Conshohocken, PA (2012).
    [17]  ASME Boiler and Pressure Vessel Code, Section II, Part A, Ferrous Material Specifications, Section II, Part A, SA-213/SA-213M, 2010 Edition with 2011 Addenda, ASME, New York, NY (2011).
    [18]  VdTÜV Material Data Sheets: 547_Warmfester Walz- und Schmiedestahl, X8CrNi19-11, Werkstoff-Nr. 1.4908 (347HFG); 550_Warmfester Walz- und Schmiedestahl, X10CrNiCuNb 18-9-3, Werkstoff-Nr. 1.4907 (SUPER304H); Issue No. 12.12 (in German), Verband der TÜV, e.V., Germany, http://www.vdtuev.de (2012).
    [19]  ASME Boiler and Pressure Vessel Code, Case 2328-2: Austenitic Stainless Steel Tubes, SA-213/SA-213M, UNS S30432, 18Cr-9Ni-3Cu-Cb-N, Section I, BPV Supplement 3, ASME, New York, NY (2010).
    [20]  ASME Boiler and Pressure Vessel Code, Section II (Materials), Part D, Properties, 2010 Edition with 2011 Addenda, ASME, New York, NY (2011).
    [21]  ASM Metals Handbook, Alloy phase diagram, Vol.3, 8th ed., "American Society for Metals", Metals Park, pp.110 (1975).
    [22]  ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, OH (1992).
    [23]  Y. Sawaragi and S. Hirano. “The Development of a New 18-8 Austenitic Steel (0.1C-18Cr-9Ni-3Cu-Nb, N) with High Elevated Temperature Strength for Fossil Fired Boilers,” Mechanical Behaviour of Materials, Vol. 4 (1991), pp. 589–594.
    [24]  T. Sourmail, “Precipitation in Creep Resistant Austenitic Stainless Steels,” Materials Science and Technology, Vol. 17, No. 1 (January 2001), p. 1.
    [25]  K. H. Lo, C. H. Shek, and J. K. L. Lai, “Recent Developments in Stainless Steels,” Materials Science and Engineering R, 65 (2009), p. 39.
    [26]  J. McEvily, "Metal Failures: Mechanisms, Analysis, Prevention." pp.163-164, John Wiley & Sons, Inc., 2002.
    [27]  F. C. Monkman and N. J. Grant, “An empirical relationship between rupture life and minimum creep rate in creep-rupture tests,” ASTM 56, 1956, pp. 563–620.
    [28]  R. F. Larson and J. Miller, “A time-temperature relationship for rupture and creep stresses,”Trans ASME, 74, 1952, pp. 765–775.
    [29]  Nobuyoshi Komai, Masaaki Igarashi, Yusuke Minami, Hiroyuki Mimura, Fujitmitsu Masuyama, Martin Prager and Peter R. Boyles, “Field Test Results of Newly Developed Austenitic Steels in the Eddystone Unit No. 1 Boiler” in Proceedings, Eighth International Conference on Creep and Fatigue at Elevated Temperatures, CREEP-8, Paper No. CREEP 2007- 26760, ASME, New York, NY, 2007.
    [30]  H. Okada, M. Igarashi, S. Yamamoto, O. Miyahara, A. Iseda, N. Komai and F. Masuyama, “Long-Term Service Experience with Advanced Austenitic Alloys in Eddystone Power Station” in Proceedings, Eighth International Conference on Creep and Fatigue at Elevated Temperatures, CREEP-8, Paper No. CREEP 2007- 26561, ASME, New York, NY, 2007.
    [31]  J. A. Siefert and S. A. David, “Weldability and Weld Performance of Candidate Alloys for Advanced Ultra supercritical Fossil Power Plants.” To be Published, Obtained via Private Communication from J. Siefert, EPRI, Charlotte, NC (2013).
    [32]  ASTM Designation: A262-93A, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels.
    [33]  李新梅、鄒勇、張忠文、鄒增大,SUPER304H 沃斯田鐵體耐熱鋼微觀組織研究,材料科學與工藝,Vol. 18,No. 2,2010。
    [34]  J. Koukal, M. Sondel, and D. Schwarz, Creep Properties Correlation of Modeled and Real Weld Joints in the Modified 9% Cr Steel, 2008.
    [35]  Annual Book of JIS Standards, Designation G0580, JIS, Tokyo, 1986, p. 440.

    QR CODE