簡易檢索 / 詳目顯示

研究生: 曾杰玉
Chieh-Yu Tseng
論文名稱: 理論計算於有機染料光電性質之研究-提升染料敏化太陽能電池效率之設計策略
Theoretical Studies of Optoelectronic Properties for Metal-free Sensitizers in DSSCs- Design Strategy for Improving Efficiency
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 呂光烈
Kuang-Lieh Lu
趙奕姼
Ito Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 密度泛函理論染料敏化太陽能電池有機染料
外文關鍵詞: DFT, DSSC, Metal-free sensitizer
相關次數: 點閱:304下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來替代能源的需求日益漸增,染料敏化太陽能電池因具有高光電轉換效率、低製作成本與低污染的特色而備受矚目。自二十年前開始,許多科學家投入開發高效率的染料,如釕金屬錯合物染料、紫質染料與有機化合物染料,卻因缺乏系統性與整合性的開發策略,使得效率只有些微的提升。
    在本研究中,我利用密度泛函理論(DFT)與時間相依密度泛函理論(TD-DFT),進行有機染料分子的光電性質分析,並藉由系統性的計算,提出針對有機染料的設計策略。在我的設計當中,有機染料分子主要由不同的電子予體(donor)與電子受體(acceptor)所構成,同時利用共軛分子(π-linker)與固著基團(anchoring group)修飾分子以調整紫外可見光譜的位置與強度。首先,為了要增強分子內電荷轉移的程度,在設計分子時,選擇推電子能力強的予體和拉電子能力強的受體之組合,並從結果中發現染料分子的光電性質主要受到電子受體的影響。因此我們能藉由改變電子受體的強度設計染料的光電性質。從結果得知,MPBA-T-CDM*CN 、MPBA-T-TP*CN與MPBA-T-CDT*CN為我們設計的染料中最具有潛力者,此三種染料皆具有很高的莫耳消光係數(molar extinction coefficient),且波長分布在400 ~ 800奈米。除了探討有機染料的光電性質,本研究亦利用Vienna Ab-initio Simulation Package (VASP) 將染料分子吸附在二氧化鈦半導體表面上,利用態密度分析討論其電子耦合與電子注入的現象。而結果顯示我所設計的染料皆具有良好的電子耦合,使得電子能順利的注入至半導體表面。綜合染料分子的光電性質與其吸附至表面後的結果,再一次的說明此設計能大幅提升有機染料太陽能電池的效率。


    Dye sensitized solar cells (DSSCs) have attracted considerable interest and been treated as promising alternative energy due to the high photon-to-current conversion efficiency, easy production and cost-effective properties. There are many efforts have been made to develop the efficient sensitizers, which are based on either metal or metal free organic complexes. But the lack of systematic and comprehensive developments results in little improvement in overall efficiency.
    In this contribution, we have designed a series of metal free dye-sensitizers and studied their optoelectronic properties using the DFT and TDDFT methods. The designed sensitizers are based on different combinations of electron -donating (D) and -withdrawing (A) units, incorporating a π-linker and an anchoring group to modify the electronic structures and tune the UV-Vis absorption. First, we considered oligomers composed by strong donor and strong acceptor to have higher degree of intra-molecular charge transfer. The calculations show acceptor plays more important role in optoelectronic properties of D-A systems and donor has minor influence which is able to change the overall spectra slightly. Therefore, we design the optoelectronic properties of metal-free sensitizers via changing the strength of acceptor. Then, MPBA-T-CDM*CN, MPBA-T-TP*CN and MPBA-T-CDT*CN are the most potential sensitizers we have already designed owing to their high molar extinction coefficients and absorption in 400~800 nm. In addition to analyzing the optoelectronic properties of designed sensitizers, we simulate the adsorption of promising sensitizers onto TiO¬¬2 semiconductor surface. Also, we use density of states analyses to discuss the electron coupling between surface and sensitizer. According to the calculation, all of the designed dyes reveal good electron coupling and electrons can efficiently inject to the TiO2 surface. In brief, the efficient sensitizers not only have appropriate optoelectronic properties but also can inject electrons to surface effectively. Therefore, we believe these sensitizers can improve the overall efficiency intensely.

    ABSTRACT I 摘要 III 致謝 IV CONTENTS V INDEX OF FIGURE VI INDEX OF TABLE X Chapter 1 Introduction 1 1.1 Conductive Polymers 1 1.1.1 Background of the Study 1 1.1.2 Donor-Acceptor (D-A) Approach 5 1.2 Dye Sensitized Solar Cells (DSSCs) 6 1.2.1 Composition and Mechanism of DSSCs 7 1.2.2 Metal-free Sensitizers 8 1.3 Outline of This Work 11 Chapter 2 Computational Details 15 2.1 D-π-A series oligomers 15 2.2 Dye/TiO2 system 17 Chapter 3 Results and Discussion 21 3.1 The Classification of Monomers in D-A Conjugated Molecules 21 3.1.1 Natures of Monomers in Donating/Withdrawing Abilities 21 3.1.2 Optoelectronic Properties of D-A conjugated molecules 22 3.2 Designed D-π-A Sensitizers for DSSCs 29 3.2.1 Design Strategy 29 3.2.2 The Optoelectronic Properties of D-π-A Sensitizers 30 3.3 Properties of Designed Sensitizers on TiO2 (101) Surface 39 3.3.1 Geometric Optimizations 39 3.3.2 Density of States (DOS) Analyses 42 Chapter 4 Conclusions 48 Reference 50 Appendix 55

    Reference
    (1) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J Chem Soc, Chem Commun 1977, 578.
    (2) Elschner, A.; Kirchmeyer, S.; Lovenich, W.; Merker, U.; Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer; November 2, 2010 ed., 2010.
    (3) Meier, H. Angew. Chem. Int. Ed. Engl. 2005, 44, 2482.
    (4) Arshak, K.; Velusamy, V.; Korostynska, O.; Oliwa-Stasiak, K.; Adley, C. Sens. J. 2009, 9, 1942.
    (5) Thomas, K. R. J.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; Chou, P.-T. Chem. Mater 2008, 20, 1830.
    (6) Shirakawa, H.; MacDiarmid, A. G.; Heeger, A. J. Chem. Commun. 2003, 1.
    (7) Kumar, D.; Sharma, R. Polym. J. 1998, 34, 1053.
    (8) Havinga, E.; Hoeve, W.; Wynberg, H. Polym. Bull 1992, 29, 119.
    (9) Gibson, G. L.; McCormick, T. M.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 539.
    (10) Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Acc. Chem. Res. 2010, 43, 1396.
    (11) Zade, S. S.; Zamoshchik, N.; Bendikov, M. Acc. Chem. Res. 2010, 44, 14.
    (12) Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2010, 114, 9101.
    (13) Lee, H. Y.; Oh, J. Y.; Chu, H. Y.; Lee, J. I.; Kim, S. H.; Yang, Y. S.; Kim, G. H.; Do, L. M.; Zyung, T.; Lee, J.; Park, Y. Tetrahedron Lett. 2003, 59, 2773.
    (14) Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Chem. Mat. 2005, 17, 5032.
    (15) Havarea, A. K.; Canb, M.; Demicb, S.; Okura, S.; Kusc, M.; Aydına, H.; Yagmurcukardesa, N.; Tarid, S. Synth. Met. 2011, 161, 2397.
    (16) Grigorian, S.; Tranchida, D.; Ksenzov, D.; Schafers, F.; Schonherr, H.; Pietsch, U. Eur. Polym. J 2011, 47, 2189.
    (17) Kim, Y. H.; Anthony, J. E.; Park, S. K. Org. Electron. 2012, 13, 1152.
    (18) Zhou, W. Y.; Wen, Y. G.; Ma, L. C.; Liu, Y. Q.; Zhan, X. W. Macromolecules 2012, 45, 4115.
    (19) Khan, S. M.; Kaur, M.; Heflin, J. R.; Sayyad, M. H. J. Phys. Chem. Solids 2011, 72, 1430.
    (20) Mikroyannidis, J. A.; Kabanakis, A. N.; Sharma, S. S.; Sharma, G. D. Org. Electron. 2011, 12, 774.
    (21) Chen, P.; Yum, J. H.; Angelis, F. D.; Mosconi, E.; Fantacci, S.; Moon, S.-J.; Baker, R. H.; Ko, J.; Nazeeruddin, M. K.; Gratzel, M. Nano Lett. 2009, 9, 2487.
    (22) Preat, J.; Jacquemin, D.; Perpete, E. A. Energ. Environ. Sci. 2010, 3, 891.
    (23) Hung, Y.-C.; Jiang, J.-C.; Lin, S.-T. J. Phys. Chem. B. 2009, 113, 8268.
    (24) O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
    (25) Tian, H.; Yang, X.; Chen, R.; Pan, Y.; L. Li; Hagfeldt, A.; Sun, L. Chem. Commun. 2007, 3741.
    (26) Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M.-H.; Lee, W.; Park, J.; Kim, K.; Park, N.-G.; Kim, C. Chem. Commun. 2007, 4887.
    (27) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2007, 111, 7224.
    (28) Kuciauskas, D.; Freund, M. S.; Gray, H. B.; Winkler, J. R.; Lewis, N. S. J. Phys. Chem. B. 2001, 105.
    (29) Geary, E. A. M.; Yellowlees, L. J.; Jack, L. A.; Oswald, I. D. H.; Parsons, S.; Hirata, N.; Durrant, J. R.; Robertson, N. Inorg. Chem. 2005, 44, 242.
    (30) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Gratzel, M. J. Phys. Chem. B. 2005, 109, 15397.
    (31) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; V.Shklover; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    (32) Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; G.Viscardi; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
    (33) Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Baker, R. H.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Chem. Commun. 2008, 2635.
    (34) Gratzel, M. Nature 2001, 414, 338.
    (35) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. J. Appl. Phys. 2006, 45, 1638.
    (36) Nazeeruddin, M. K.; Bessho, T.; Cevey, L.; Ito, S.; Klein, C.; Angelis, F. D.; Fantacci, S.; Comte, P.; Liska, P.; Imai, H.; Gratzel, M. J. Photochem. Photobiol. A 2007, 185, 331.
    (37) Mishra, A.; Fischer, M. K.; Bauerle, P. Angew. Chem. Int. Ed. Engl. 2009, 48, 2474.
    (38) Prezhdo, O. V.; Duncan, W. R.; Prezhdo, V. V. Acc. Chem. Res. 2008, 41, 339.
    (39) Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S. Mat. Sci. Eng. R. 2009, 63, 81.
    (40) Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2001, 111, 7224.
    (41) Kim, J. Y.; Kim, Y. H.; Kim, Y. S. Curr. Appl. Phys. 2011, 11, S117.
    (42) Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Chem Commun (Camb) 2007, 3741.
    (43) Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256.
    (44) Qin, P.; Yang, X.; Chen, R.; Marinado, L. S.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 1853.
    (45) Singh, S. P.; Roy, M. S.; Thomas, A.; Bhanuprakash, K.; Sharma, G. D. Org. Electron. 2012, 13, 3108.
    (46) Zhang, J.; Kan, Y.-H.; Li, H.-B.; Geng, Y.; Wu, Y.; Su, Z.-M. Dyes Pigments 2012, 95, 313.
    (47) Mullekom, H. A. M. v.; Nekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mat. Sci. Eng. R. 2000, 32, 1.
    (48) Gaussian 09, R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox 2009.
    (49) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (50) Kresse, G.; Furthmuller, J. Phys. Lett. B. 1996, 54.
    (51) Kresse, G.; Hafner, J. Phys. Lett. B. 1993, 48, 13115.
    (52) Becke, A. D. The Journal of Chemical Physics 1993, 98, 5648.
    (53) Rassolov, V. A.; Ratner, M.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.
    (54) Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F. J. Phys. Chem. C. 2008, 112, 874.
    (55) Horiuchi, T.; Miura, H.; Uchida, S. J. Photochem. Photobiol. A. 2004, 164, 29.
    (56) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550.
    (57) Gorelsky, S. I. 2010.
    (58) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187.
    (59) Hafner, J. J. Comput. Chem. 2008, 29, 2044.
    (60) O’Rourke, C.; Bowler, D. R. J. Phys. Chem. C. 2010, 114, 20240.
    (61) Zhan, C.-G.; Nichols, J. A.; Dixon, D. A. J. Phys. Chem. A. 2003, 107, 4184.
    (62) Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahash, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993.
    (63) O’Rourke, C.; Bowler, D. R. J. Phys. Chem. C 2010, 114, 20240.
    (64) Jungsuttiwong1, S.; Tarsang, R.; Pansay, S.; Yakhantip, T.; Promarak, V.; Sudyoadsuk, T.; Kaewin, T.; Saengsuwan, S.; Namuangrak, S. In World Academy of Science, Engineering and Technology 2011; Vol. 53.
    (65) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P. J. Comput. Chem. 2011, 32, 1568.

    QR CODE