簡易檢索 / 詳目顯示

研究生: 黃建文
Chien-wen Huang
論文名稱: 引擎之油底殼的結構振動與噪音研究
On the Study of the Vibration and Noise of an Engine's Oil Pan
指導教授: 徐茂濱
Mau-Pin Hsu
口試委員: 楊條和
Tyau-Her Young
洪振發
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 油底殼引擎有限元素法邊界元素法應變振動噪音
外文關鍵詞: Oil pan, Engine, Finite element method, Boundary element method, Strain, Vibration, Noise
相關次數: 點閱:247下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用有限元素法模型,導入引擎的各主軸承之負載入力,透過MSC. Nastran求解引擎於中高轉速下(3200與4400 rpm)之振動,接著將引擎表面之振動速度匯入引擎之邊界元素法模型,經由VL Acoustics求得各轉速下之聲功率與聲壓分佈。結果顯示,油底殼元件之噪音量較大,故應對其進行結構強化,以降低其噪音量。在油底殼之模型上,運用應變分佈圖判斷肋條應佈建之部位,得以增加油底殼之剛性,提升該模態之自然頻率並避開其他模態,即可降低其振動量。
      
    運用上述技術,將油底殼原於底殼處之半月型與三角型肋條卸除,經改良後之剛性明顯增強,其自然頻率為1368 Hz,經與未卸除前之原頻率(1220 Hz)比較,頻率上升148 Hz。而新增之肋條總重為170克,較原半月型與三角型肋條高出110克,但此上升之幅度僅佔油底殼重量的2.5%,因此其增重尚可接受。


    This study adopted the finite element model and imported the loading input force of each major engine bearings. The authors had MSC. Nastran's solving engine vibrated at medium to high rotation speed (3200 and 4400 rpm) and then imported the vibration speed of the engine surface to the engine’s boundary element model. Acoustic power and acoustic pressure distribution of each rotation speed were obtained from VL Acoustics. Our results suggest that the noise volume of oil pan component is higher, and thus its structure should be stiffened to reduce the noise volume. For the oil pan model, the study adopted strain distribution to determine the placement of ribs for stiffening the oil pan, elevating the natural frequency of the model, and keeping it away from other modes. These measures should be cable of reducing the vibration effectively.

    According to the above-mentioned techniques, the authors removed the half-moon and the triangle ribs that are originally located at the bottom of the oil pan. After the modification, the stiffness was improved significantly and the natural frequency was increased to 1368 Hz, i.e., a 148 Hz increase from the original frequency (1220 Hz). The total weight of the newly added ribs was 170 g, which is 110 g heavier than the original half-moon and triangle ribs, yet this increase is only 2.5% of the total weight of the oil pan. In other words, this increase in weight is acceptable.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.4 本文架構 9 第二章 邊界元素法之理論與軟體設置 11 2.1. 邊界元素法之簡介與理論 11 2.2. 聲學網格放大 14 2.3. 聲學場點佈建 21 2.4. 網格映射 24 2.5. 小結 25 第三章 整體引擎之強制振動與聲學分析 26 3.1. 整體引擎之振動響應之觀察點 26 3.2. 整體引擎之強制振動分析 38 3.2.1. 引擎於3200 rpm之振動響應分析與結果 38 3.2.2. 引擎於4400 rpm之振動響應分析與結果 51 3.3. 整體引擎之聲學分析 63 3.3.1. 聲學向量轉換理論 63 3.3.2. 整體引擎之邊界元素模型 64 3.3.3. 引擎於3200 rpm之聲學分析與結果 68 3.3.4. 引擎於4400 rpm之聲學分析與結果 71 3.4. 小結 74 第四章 油底殼之結構改良 75 4.1. 油底殼之模型與模態介紹 76 4.2. 由應變變化探討油底殼之改良方針 78 4.2.1. 由應變分佈圖判斷肋條增加位置 81 4.2.2. 肋條建構位置之選擇 85 4.3. 改良模型與原始模型之比較 93 4.3.1. 半月型肋條高度之探討 93 4.3.2. 十字型肋條之質量減少分析 96 4.3.3. 探討油底殼底殼處之剛性 98 4.3.4. 原有模型與改良模型之比較 101 4.4. 油底殼結構改良前後之整體引擎聲學結果比較 103 4.5. 小結 106 第五章 結論與未來建議 107 5.1. 結論 107 5.2. 對未來研究方向的建議 109 參考文獻 110 附 錄A 113 作者簡介 114

    [1] Athavale, S.M., and Sajanpawar P. R., “Analytical Studies on Influence of Crankshaft Vibrations on Engine Noise Using Integrated Parametric Finite Element Model: Quick Assessment Tool,” SAE 1999-01-1769, 1999.
    [2] Chabot L., “Noise and Vibration Optimisation of a Gasoline Engine,” PSA Group 網站(http://www.ricardo.com/)
    [3] François, G., Michel, T., Naji, E. M., and Luc, C., “Acoustic Transfer Vectors for Numerical Modeling of Engine Noise,” LMS International , 2002.
    [4] Gomes, E., Breida, M. “NVH Optimization of the 1.2L DIATA Engine,” SAE 2003-01-1697, 2003.
    [5] Lahey, H. P., Steffens, C., and Schultz, C., “Simulation Method for Geartrain NVH Assessment and Optimization,” SAE 2001-01-1593, 2001.
    [6] Lu, Y. C., and D’Souza, K., “Acoustic Analysis of Isolated Engine Valve Covers,” SAE 2003-01-1674, 2003.
    [7] McCulloch, C., Tournour, M., and Guisset, P., “Modal Acoustic Transfer Vectors Make Acoustic Radiation Models Practical for Engines and Rotating Machinery,” 2001.
    [8] Nehl, J., Steffens, C., and Nussmann, C., “Virtual NVH Powertrain Development,” 2006.
    [9] Nunes, R. F., Nogueira, C. F., Argentino, M. A., and Hackenbroich, D.,
    “Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling,”SAE 2001-01-1519, 2001
    [10] Payer, E., “Advanced Numerical Simulation Techniques for the Fatigue and NVH Optimization of Engines,” The 2nd MSC Worldwide Automotive Conference, 2000.
    [11] Priebsch, H. H., Herbst, H., Offner, G., and Sopouch, M., “Numerical Simulation and Verification of Mechanical Noise Generation in Combustion Engines,” ISMA2004 Conference , 2004.

    [12] Robinson, J., Hussain, K., and Day, A., “NVH Optimisation of Automotive Engine Components Using Design of Experiments and Computer Aided Engineering Techniques,” Masters’ conference 2004, University of Bradford, 2004.
    [13] Stout, J. L., “Concept Level Powertrain Radiated Noise Analysis,” SAE 1999-01-1746, 1999.
    [14] Wolf, A., Gaertner U. and Droege T., “Noise Reduction and Sound Design for Diesel Engines – An Achievable Development Target for US Passenger Cars?” SAE 2003-01-1719, 2003.
    [15] Yamamoto, K., Naritomi, T., “Design Optimization of Engine Bolts in Noise and Vibration Performance Development Using FEM,” SAE 2006-01-0282, 2006.
    [16] Zhang, J., and Han, J., “CAE Process to Simulate and Optimise Engine Noise and Vibration,” Mechanical Systems and Signal Processing 20, 2006.
    [17] Zhou, M., and Emery, J., “Exhaust Manifold Radiated Noise Prediction Methodology,” SAE 2001-01-1433, 2001.
    [18] 周政翰,薄膜應力之有限元素分析與評估,國立成功大學土木工程研究所碩士論文,2006。
    [19] 林毅欣,以有限元素法分析汽油引擎之振動,國立台灣科技大學機械工程研究所碩士論文,2010。
    [20] 薛永駿,引擎之正時蓋板的結構振動與噪音研究,國立台灣科技大學機械工程研究所碩士論文,2011。
    [21] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,2005。
    [22] 張印本、楊良太、施議訓、理工科技顧問有限公司,金屬材料對照手冊(第四版),2009。

    無法下載圖示 全文公開日期 2016/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE