簡易檢索 / 詳目顯示

研究生: 陳建州
Chien-Chou Chen
論文名稱: 滑鼠解析度對移動目標物追蹤績效的影響以及動態模式建模
The effect of control-response ratio on targeting with different speed moving target : dynamic model development
指導教授: 李永輝
Yung-hui Lee
口試委員: 林久翔
Chiu-hsiang Lin
謝光進
Kong-king Shieh
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 控制反應比滑鼠追蹤動態
外文關鍵詞: control-response ratio, tracing, moving
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用滑鼠為控制器,並經由調整滑鼠解析度的方式進行控制反應比的調控,探討控制反應比對移動目標物追蹤績效的影響。從實驗數據分析結果建立動態Fitts’ Law模式。實驗之後採用問卷方式了解受試者對控制反應比的偏好以及在動態追蹤作業使用之策略。
    本研究實驗的控制器採用微軟2009年推出之遊戲專用滑鼠Side Winder X8 Mouse,並募集了10位受試者參與。實驗於十九吋液晶螢幕上以動態Fitts’ Law程式測試,分別在使用不同滑鼠解析度(250、1000、4000)的條件下,對不同目標物大小(6、9、12,單位:Dpi)、距離(20、40、60,單位:Dpi)以及速度(0、50、500,單位:Dpi/Sec)下進行追蹤作業,各種組合重複2次。實驗結果顯示,整體來說滑鼠解析度1000的績效(0.74秒)大於解析度250(0.84秒)大於解析度4000(0.89秒),目標物大小與距離則符合Fitts’ Law模式,大小越大的績效(0.69、0.79、0.99秒)以及目標物距離(0.74、0.82、0.9秒)越近的績效越好,速度則為越慢績效越高(0.72、0.75、1秒)。
    主觀評比的部分,整體而言受試者均偏好使用解析度1000之滑鼠,而使用之策略可分為兩種,分別為追擊的方式與預測路徑的方式,在使用解析度250與1000之滑鼠,針對移動速度較快的目標物受試者偏好使用預測路徑的方式;使用解析度4000之滑鼠,則僅目標物距離近時採用追擊的方式。
    Fitts’ Law在預測本實驗之追蹤移動目標物的動作時間上,當目標物靜止時R2可達0.9,但是對移動中的目標物僅達0.3,顯示Fitts’ Law無法對動態目標物追蹤績效進行預設,而本研究發展出的動態模式對靜態或動態均可達到0.9。


    This study examined the effects of changing control-response ratios on the performance of target acquisition with and without moving speeds. In addition, models were developed to express factors on the change of performance on target acquisition in the dynamic tasks. Questionnaires were used to understand participants’ strategies while traced these moving targets.

    10 participants were requested to use Side Winder X8 Gaming Mouse (Microsoft) with different dpi settings (250, 1000, 4000 dpi), to trace target of 3 sizes (6, 9, 12, unit: dpi), in 3 distances (20, 40, 60, unit: dpi) and with 3 different speeds (0, 50, 500, unit: dpi/sec) on the 19” TFT-LCD. There was a repetition of two times for each level.

    The result showed the mouse with 1000 dpi has the highest performance (0.74 sec) followed by 250 dpi (0.84 sec) and 4000 dpi (0.89 sec). Two strategies would be found, one is to trace and the other is to predict. Participants prefer to predict the path for the fast moving target under dpi 250 and 1000 dpi; whereas, participants prefer to trace for shorter distance while used mouse with 4000 dpi.

    Traditional Fitt’s law was used to modeling performance time for moving targets and the mean R2 was as low as 0.3. Extended models were developed by incorporated moving speed and control-response ratios. As a result, they were better fit to the data with a mean R2 of 0.9

    目錄 摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 實驗架構概述 5 1.4 研究限制 7 第二章 文獻整理 8 2.1 滑鼠的發展與原理 8 2.2 介紹Fitts’ Law 10 2.2.1 Fitts’ Law歷史與公式 10 2.2.2 Fitts’ Law的應用與變化 11 2.3 移動目標物之點選作業 13 2.4 控制反應比 16 2.5 小結 18 第三章 研究方法 19 3.1 實驗儀器與設備 19 3.2 受試者募集 21 3.3 實驗變項 22 3.3.1 實驗變項 22 3.3.2 其他控制變項 24 3.4 實驗程序 25 3.4.1 實驗前準備階段 25 3.4.2 正式實驗階段 25 3.5 資料處理與分析方法 29 3.5.1 資料處理 29 3.5.2 資料分析 29 第四章 實驗結果 31 4.1 點選績效數據分析 31 4.1.1 作業時間 31 4.1.2 失誤次數 38 4.2 動態Fitts’ Law模式 45 4.3 主觀評比分析 51 4.3.1 量表分析 51 4.3.2 受試者文字敘述 52 第五章 討論 54 5.1 控制-反應比 54 5.2 目標物大小、距離以及速度 57 5.3 動態Fitts’ Law模式 61 5.4 主觀評比 62 第六章 結論與建議 63 6.1 結論 63 6.2 後續研究與建議 65 參考文獻 66 附錄A 受者同意書 69 附錄B 基本資料填寫 70 附錄C 作業完成時間之三因子交互作用表 74 附錄D 失誤次數之三因子交互作用表 76 附錄E 受試者對於不同滑鼠解析度滑鼠之使用經驗 78

    1. Accot, J., and Zhai, S. (1997) Beyond Fitts' law: Models for trajectory-based hci tasks. In Proceedings of ACM CHI 1997 Conference on Human Factors in Computing Systems, pages 295-302.
    2. Accot, J., and Zhai, S. (2003). Refining Fitts' law models for bivariate pointing. SIGCHI. April 5-10
    3. Adams, J. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior,3, 111-150.
    4. Adams, J. (1976).Issues for a closed-loop theory of motor learning. In G. Stelmach (ed.), Motor control: Issue and trends. New York: Academic.
    5. A. T. Welford. (1960) The measurement of sensorimotor performance: Survey and reappraisal of twelve years progress. Ergonomics, 3:189-230.
    6. Bardini, Thierry, und Friedewald, M. (2003). Chronicle of the Death of a Laboratory: Douglas Engelbart and the Failure of the Knowledge Workshop. S. 191-212 in: Inkster, Ian (Hg.), History of Technology, Vol. 23. London, New York: Continuum.
    7. Brouwer, A., Brenner, E., and Smeets, J., (2000). Hitting Moving Objects: the Dependency of Hand Velocity on the Speed of the Target, Experimental Brain Research, 133, 242–248.
    8. Buck, L.(1980). Motor performance in relation to control-display gain and target width. Ergonomics, 23, 579-589
    9. Duarte, M., and Freitas, S., M.S.F. (2005). Speed–Accuracy Trade-Off in Voluntary Postural Movements. Motor Control, 2005, 9, 180-196
    10. Fitts, P., M.(1954) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6):381-391
    11. Fraser, J., and Gutwin, C., (2000) The Effects of Feedback on Targeting Performance in Visually Stressed Conditions. Proceedings of Graphics Interface 2000, Montreal, 203-210.
    12. Gary D. Langolf, Don B. Chaffin, and James A. Foulke. (1976) An investigation of Fitts' Law using a wide range of movement amplitudes. Journal of Motor Behavior, 8:113-128.
    13. Gary D. Langolf and W. M. Hancock. (1975) Human performance times in microscope work. AIIE Transactions, 7(2):110-117.
    14. Hoffmann, E., R. (1991). A comparison of hand and foot movement times. Ergonomics, 34:397-406.
    15. Hoffmann, E. R.,(1991) Capture of Moving Targets: a Modification of Fitts' Law. Ergonomics, 34, 211-220.
    16. Jagacinski, R., Repperger, D., Ward, S., & Moran, M., (1980) A Test of Fitts' Law with Moving Targets. Human Factors, 22, 225-233.
    17. Jenkins, W., and Conner, M.B. (1949). Some design factor factors in marking setting on a liner scale. Journal of Applied Psychology, 33, 395-409.
    18. Kerr, B., A. and Langolf, G., D. (1977). Speed of aiming movements. Quarterly Journal of Experimental Psychology, 29:475-481.
    19. Kerr, R. (1973). Movement time in an underwater environment. Journal of Motor Behavior,5:175-178.
    20. Lee, D., Port N. L., and Georgopoulos, A. P. (1997). Manual interception of moving targets: II. Online control of overlapping submovements. Experimental Brain Research, 116(3):421-433.
    21. MacKenzie, I., S. (1989) A note on the information-theoretic basis for Fitts' law. Journal of Motor Behavior, 21(3):323-330.
    22. MacKenzie, I., S. (1992) Fitts' law as a research and design tool in human-computer interaction. Human-Computer Interaction, 7:91-139.
    23. Maxwell, F., and George, B. (1995) Computer mouse use and cumulayive trauma disorders of the upper extremities. Ergomonics Vol.38, No.2, pp.2465-2475.
    24. McGuffin, M.,(2002) Fitts' Law and Expanding Targets: An Experimental Study, and Applications to User Interface Design. Unpublished M.Sc. Thesis, Computer Science, University of Toronto.
    25. Mould, D., and Gutwin, C. (2004). The Effects of Feedback on Targeting with Multiple Moving Targets. Human-Computer Communications Society, May 17-19.
    26. Phillips, J. G. & Triggs, T. J. (2001). Characteristics of cursor trajectory controlled by the computer mouse. Ergonomics, 44(5), 527-536.
    27. Port, N., L., Lee D., Dassonville, P., and Georgopoulos, A., P. (1997) Manual interception of moving targets: I. Performance and movement initiation. Experimental Brain Research, 116(3):406-420.
    28. Sawyer, B. (2002). Serious Games Summit. List retrieved on Sept. 25, 2005. http://www.seriousgamessummit.com/.
    29. Sheridan, T., B. and Ferrell, W. R. (1963) Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics, 4:25-29.
    30. Wallace, S., A. Newell, K., M. and Wade, M., G. (1978) Decision and response times as a function of movement difficulty in preschool children. Child Development, 49:509-512.
    31. Whisenand, T.G. and Emurian, H.H. (1999). Analysis of cursor movement with a mouse. Computers in Human Behavior, 15, 85-103.
    32. 蘇木川 (2005) : 可採多樣工作姿勢的點選輸入設備之設計與驗證,國立台灣科技大學工業管理系博士學會論文。

    QR CODE