簡易檢索 / 詳目顯示

研究生: 蕭廷秝
Tyng-Lih - Hsiao
論文名稱: 利用Underwood簡捷法進行複合型蒸餾與反應蒸餾製程之最小能耗評估與分析
Minimum Energy Evaluation and Analysis for Hybrid Distillation and Reactive Distillation Processes via Underwood Shortcut Method
指導教授: 李豪業
Hao-yeh Lee
口試委員: 陳誠亮
Cheng-liang Chen
江佳穎
Chia-ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 123
中文關鍵詞: Underwood簡捷法熱整合蒸餾複合型熱整合組態反應蒸餾最小能耗量
外文關鍵詞: Underwood Method, Heat-integrated Distillation, Hybrid, Reactive Distillation, minimum vapor flow
相關次數: 點閱:463下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在化工製造業中,蒸餾是一個高能源消耗的單元,因此,在考量經濟與環境的情況下,如何提升程序生產的效率、使用低能源消耗的蒸餾技術及整合多單元的技術,是目前化工產業發展的主要目標。Weng and Lee 在2015年時提出一個新式複合型熱整合組態,它結合了熱耦合組態與多效蒸餾組態的優點,可同時達到降低能源消耗與增加能源再利用的目標,複合型熱整合組態可以消除再混合效應且相比於傳統蒸餾組態,它可以節省約50.4%的能耗,不僅如此,相比於熱耦合組態,它可以降低能源浪費;相比於多效組態,它可以減少熱交換所需的面積。所以,這個研究將會著重於複合型熱整合組態的理論推導與分析,並且利用Underwood簡潔法來進行普通蒸餾、多效蒸餾、熱耦合蒸餾以及複合型組態的推導與比較。再利用Aspen Tech 的模擬軟體來進行驗證。
根據模擬與理論推算的結果,本研究將會探討各種不同的情形與不同的組態,致力於整理出一個流程圖,希望能夠提供選取最小所需能耗組態的快速方法參考。
另外,反應蒸餾目前也是蒸餾技術相關的重要新領域,它結合了兩個不同單元,反應與分離,在一單元,因此可以簡化生產程序、提高生產效率與降低能源需求等等許多的優勢,但相對的,反應在推導上也相對較普通蒸餾複雜。因此,本研究也將試著推導反應蒸餾組態以及複合型熱整合反應蒸餾的最小能耗簡捷法,並利用模擬軟體驗證與比較。


In the chemical industry, the highest energy consumption is the distillation process. Therefore, under the consideration of the economy and environment, how to enhance the effectiveness of the process with low energy consumption distillation column technology and multiply units with heat-integration is the main direction of the chemical industry development. Weng and Lee (2015) proposed a new hybrid heat-integrated configuration, which combines the advantages of the multi-effect and the thermally coupled configurations. It achieves the objectives of energy consumption falling and energy reuse. This configuration can not only save about 50.4% of energy consumption compared to the conventional configuration but eliminate the remixing effect. Moreover, it can lower the energy waste in the thermally coupled configuration, and reduce the energy transfer area of the heat exchanger in the multi-effect configuration. This study will focus on the derivation of the theoretical estimation. It analyzes this hybrid configuration to derivate a series of formulas, which also applies the shortcut method to analyze the energy requirements of the conventional, the multi-effect, and the thermally coupled heat-integrated configurations. Aspen Plus simulator is then used to verify the results of the formula, and compare the performance of energy saving with other configurations.
Based on that results, this study discusses the appropriate situation with different feed composition and relative volatility, and is dedicated to organizing an arrangement for making a quick decision on the lowest energy-consuming configurations. Moreover, the reactive distillation, being a relatively new field, which is a process integrating reaction and separation in a single unit. There are several advantages compared to the conventional sequential process, such as reduced investment and operating costs, reduced utility consumption, and higher conversion and selectivity. This study investigates the most appropriate shortcut derivations for the energy requirements of the conventional and the hybrid configurations with the reactive distillation. The shortcut derivations with the heat-integrated distillation columns for the minimum vapor flow have been presented. The results of this study show that the values of the theoretical calculation are quite close to the values of the simulation.

TABLE OF CONTENTS ACKNOWLEDGEMENTS I 摘要 II ABSTRACT IV TABLE OF CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XI ABBREVIATIONS AND NOTATIONS XII CHAPTER I INTRODUCTION 1 1.1 BACKGROUND 1 1.2 MOTIVATION AND OBJECTIVE OF THIS STUDY 8 1.3 LITERATURE REVIEW 10 1.4 ORGANIZATION OF THIS THESIS 12 CHAPTER II MULTICOMPONENT WITH UNDERWOOD METHOD 14 2.1 UNDERWOOD SHORTCUT METHOD 14 2.2 CONVENTIONAL DISTILLATION CONFIGURATIONS 18 CHAPTER III HEAT-INTEGRATED CONFIGURATIONS WITH UNDERWOOD METHOD 23 3.1 THE THERMALLY COUPLED CONFIGURATION 23 3.2 THE MULTI-EFFECT CONFIGURATION 30 3.3 THE HYBRID CONFIGURATION 36 3.4 DISCUSSION 42 3.4.1 Rigorous Simulations 42 3.4.2 Realistic System 47 3.4.3 Effect of Relative Volatility and Feed Composition 55 CHAPTER IV REACTIVE DISTILLATION WITH UNDERWOOD METHOD 61 4.1 THEORETICAL DERIVATION 61 4.1.1 Reaction Section in the Middle 72 4.1.2 Reaction Section in the Top 74 4.1.3 Reaction Section in the Base 77 4.2 RIGOROUS SIMULATION 80 4.2.1 Reaction Location: in the middle of the column 83 4.2.2 Reaction Location: in the top of the column 85 4.2.3 Reaction Location: in the bottom of the column 87 4.3 EXAMPLE- AN IDEAL RD CONFIGURATION WITH NUMERICAL VALUE 90 4.4 THEORETICAL DERIVATION FOR HYBRID RD CONFIGURATION 93 CHAPTER V CONCLUSIONS AND FURTHER STUDY 99 5.1 CONCLUSIONS 99 5.2 FURTHER STUDY 101 REFERENCES 102

REFERENCES

1. Al-Arfaj M. A.; Luyben W. L. Effect of number of fractionating trays on reactive distillation performance. AIChE J. 2000; 46:2417–2425.
2. Carlberg, N. A.; Westerberg, A. W. Temperature – Heat Diagrams for Complex Columns. 2. Underwood’s Method for Side-strippers and Enrichers. Ind. Eng. Chem. Res. 1989, 28, 1379 -1386.
3. Carlberg, N. A.; Westerberg, A. W. Temperature – Heat Diagrams for Complex Columns. 3. Underwood’s Method for the Petlyuk Configuration. Ind. Eng. Chem. Res. 1989, 28, 1386 -1397.
4. Engelien, H. K.; Skogestad, S. Minimum Energy Diagrams for Multi-effect Distillation Arrangements. Wiley InterScience. 2005, Vol. 51, No. 6.
5. Fenske, M.R. Fractionation of Straight-run Pennsylvania Gasoline. Ind. Eng. Chem. 1932, 24, 482.
6. Fidkowski, Z.; Krolikowski, L. Thermally Coupled System of Distillation Columns: Optimization Procedure. AIChE J. 1986, 32 (No. 4).
7. Franklin, N. L.; Forsyth, J. S. The interpretation of Minimum Reflux Conditions in Multi-Component Distillation. Trans. Inst. Chem. Eng. 1953, 31 (reprinted in the Jubilee Supplement of Trans. Inst. Chem. Eng. 1997, 75).
8. Halverson, I. J.; Skogestad, S. Minimum energy consumption in multicomponent distillation. 1. V-min diagram for a two-product column. Ind. Eng. Chem. Res. 2003, 42, (3), 596-604.
9. Henry Kister. Distillation Design, 1st Edition, McGraw-Hill, 1992, ISBN 0-07-034909-6.
10. Ho, Y. C. ; Ward, J. D.; Yu, C. C. Quantifying Potential Energy Savings of Divided Wall Columns Based on Degree of Remixing. Ind. Eng. Chem. Res., 2011, 50 1473-1487.
11. Hsiao, T. L.; Weng, K. C.; Lee, H. Y. Design and control of hybrid heat-integrated configuration for an ideal indirect reactive distillation process. Taiwan. Ind. Chem. Eng. 2016. (in press)
12. King, C. J. Separation Processes. Chemical Engineering Series; McGraw-Hill: New York, 1980.
13. Koehler, J.; Poellmann, P.; Blass, E. A Review on Minimum Energy Calculations for Ideal and Non-ideal Distillations. Ind. Eng. Chem. Res. 1995, 34 (No. 4), 1003 - 1020.
14. Malone, M. F. and Doherty, M. F. Reactive distillation. Industrial and Engineering Chemistry Research, 2000, vol. 39, no. 11, pp. 3953–3957.
15. McCabe, W. L. and Thiele, E. W. Graphical Design of Fractionating Columns. Ind. Eng. Chem., 1925, 17, 606.
16. Perry, R.H. and Green, D.W. Perry's Chemical Engineers' Handbook, 6th Edition, McGraw-Hill, 1984, ISBN 0-07-049479-7.
17. Robinson, C. S. and Gilliland, E. R. Elements of Fractional Distillation, 4th ed., McGraw-HiU Publishing Co., New York, 1950.
18. Seader, J.D. and Henley, Earnest J. Separation Process Principles, Wiley, 1998, ISBN 0-471-58626-9.
19. Shiras, R. N.; Hansson, D. N.; Gibson, C. H. Calculation of Minimum Reflux in Distillation Columns. Ind. Eng. Chem. 1950, 42 (No. 18), 871 - 876.
20. Taylor, R. and Krishna, R. Modelling reactive distillation, Chemical Engineering Science, 2000, 55, 5183-5229.
21. Tung, S. T.; Yu, C. C. Effects of Relative Volatility to the Design of Reactive Distillation Systems. AIChE J. 2007, 53, 1278–1297.
22. Underwood, A. J. V. The Theory and Practice of Testing Stills. Trans. AICHE., 1932, 10, 112.
23. Underwood, A. J. V. Fractional Distillation of Ternary Mixtures. Part I. J. Inst. Pet. 1945, 31, 111 - 118.
24. Underwood, A. J. V. Fractional Distillation of Multi-Component Mixtures s Calculation of Minimum Reflux Ratio. J. Inst. Pet. 1946, 32, 614 - 626.
25. Underwood, A. J. V. Fractional Distillation of Ternary Mixtures. Part II. J. Inst. Pet. 1946, 32, 598 - 613.
26. Underwood, A. J. V. Fractional Distillation of Multi-Component Mixtures. Chem. Eng. Prog. 1948, 44 (No. 8).
27. Wachter, J. A.; Ko, T. K. T.; Andres, R. P. Minimum Reflux Behaviour of Complex Distillation Columns. AIChE J. 1988, 34 (No. 7), 1164 - 84.
28. Weng, K. C.; Lee, H. Y. Design of hybrid heat-integrated configuration for indirect reactive distillation process. Comput. Aided. Chem. Eng. 2015; 37:1469-74.

QR CODE