簡易檢索 / 詳目顯示

研究生: 吳宗晏
Zong-Yan Wu
論文名稱: 氧化銀/片狀氧化鋅奈米觸媒進行抗菌與光降解之研究
Silver oxide/sheet-like zinc oxide nano-catalyst for applications of antibacterial and photocatalytic degradation
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 155
中文關鍵詞: 可見光光觸媒抗菌光催化降解
外文關鍵詞: visible photocatalyst, anti-bacteria, photocatalytic degradation
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以奈米半導體光觸媒的合成與應用進行相關研究,以氧化鋅n型半導體當作載體,外層覆上p型半導體氧化銀,形成p-n界面的奈米複合材料,以X-ray繞射儀(XRD)分析材料的結構及結晶性;場發射掃描式電子顯微鏡(FESEM)觀察材料的表面形態;能量分散式光譜儀(EDS)半定量分析材料組成元素之含量變化。光學性質量測採用傅里葉轉換紅外光譜(FTIR)檢測材料內化合物鍵結種類,以紫外光/可見光吸收光譜儀(UV-Vis spectrometer)檢測材料吸收率與能隙。
在抗菌試驗上,菌種選用大腸桿菌(E. coli)與金黃色葡萄球菌(S. aureus)。抗菌效果最好的為奈米片狀ZnO披覆5 wt%Ag2O,其對大腸桿菌抗菌結果上,無論在暗室或亮室環境下,第一個小時均達到完全無菌;對於金黃色葡萄球菌抗菌結果,於3小時後暗室環境下,殺菌率達99.99%以上,亮室環境下經過3小時後,則完全滅菌,證實相同觸媒材料,在照光下的抗菌效果比暗室下更為優異。最後以奈米片狀ZnO披覆5 wt%Ag2O進行染料光催化裂解試驗,發現於可見光與紫外光照射下對於MB染料具有光催化裂解能力,並可多次循環使用。


In this research, the synthesis and application of nano-semiconductor photocatalysts are studied. The n-type zinc oxide semiconductor is used as a carrier, and the outer layer is coated with p-type silver oxide semiconductor nanoparticles to form a composite material with many p-n nano-diodes. The structure and crystallinity of the material was analyzed by XRD (X-ray diffractometer); the surface morphology of the material was observed by FESEM (Field emission scanning electron microscopy); the content of the constituent elements of the material was semi-quantitatively analyzed by EDS (Energy dispersive spectrometer). The optical property measurement by FTIR (Fourier transform infrared spectroscopy) to detect the compound bond type and the UV-Vis spectrometer to detect the absorption behavior and band gap in the material.
In the antibacterial test, two kinds of strains from E. coli and S. aureus were selected. The best antibacterial effect came from the ZnO nano-sheets coated with 5 wt% Ag2O. For the antibacterial test of E. coli, it was completely bactericidal in the dark and bright conditions for the first hour. For the antibacterial test of S. aureus, it took for three hours to have the sterilization efficiency over 99.99% in a dark condition, but it was 100% in a light illuminating condition. Here we confirmed that the antibacterial effect with the same catalyst material under the light-illuminating condition was better than under the dark. Finally, the photocatalytic degradation test of the dye was also carried out with the excellent ZnO nano-sheets coated with 5 wt% Ag2O. Under the visible light and UV light, it was found that this composite photocatalyst was able to degrade the MB dye and to be re-used for several runs.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第 1 章 緒論 1.1 前言 1.2 奈米材料簡介 1.3 光觸媒材料簡介 1.4 抗菌材料簡介 1.5 研究動機與目的 第 2 章 文獻回顧與原理 2.1 氧化鋅簡介 2.1.1 氧化鋅性質 2.1.2 氧化鋅製備 2.2 氧化銀簡介 2.2.1 氧化銀性質 2.2.2 氧化銀製備 2.3 細菌構造與分類 2.3.1 細菌之細胞壁 2.3.2 細菌分類 2.4 奈米光觸媒半導體簡介 2.4.1 奈米現象 2.4.2 觸媒原理 2.4.3 光觸媒半導體簡介 2.4.4 光觸媒氧化與還原機制簡介 2.4.5 自由基簡介 2.5 抗菌機制 2.5.1 光觸媒抗菌 2.5.2 暗室下抗菌機制 2.5.3 金屬抗菌 2.5.4 銀抗菌 2.5.5 氧化鋅抗菌 2.5.6 硫抗菌 2.6 光觸媒半導體改質 2.6.1 摻雜改質 2.6.2 金屬改質 2.6.3 共觸媒改質 第 3 章 實驗方法與步驟 3.1 實驗藥品 3.2 實驗設備器材 3.3 實驗流程 3.3.1 氧化鋅材料之修飾 3.3.2 抗菌試驗 3.3.3 光催化裂解染料試驗 3.4 分析儀器介紹 3.4.1 表面分析 3.4.2 結構分析 3.4.3 光學分析 第 4 章 結果與討論 4.1 氧化鋅/氧化銀複合光觸媒材料結構鑑定 4.1.1 X-Ray Diffraction (XRD)繞射分析 4.1.2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)之表面型態觀察 4.1.3 複利葉紅外光譜(Fourier Transform Infrared Sepectromter,FTIR)之定性分析 4.1.4 紫外-可見光/近紅外光分析儀 (UV-VIS Spectroscopy) 4.1.5 電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS)之Mott-Schottky圖譜分析 4.2 抗菌性能之探討 4.2.1 顆粒狀ZnO與奈米片狀ZnO粉體抗菌測試 4.2.2 純Ag與Ag2O粉體抗菌測試 4.2.3 顆粒狀ZnO與奈米片狀ZnO粉體披覆不同比例Ag2O抗菌測試 4.3 光觸媒在水溶液相之應用 4.3.1 奈米片狀ZnO披覆Ag2O在可見光與紫外光下裂解多種染料之能力 4.3.2 奈米片狀ZnO披覆不同比例Ag2O在可見光裂解多種染料之能力 4.3.3 染料裂解重複使用性之探討 第 5 章 結論 第 6 章 參考文獻

[1]川合知二原著、林振華編譯、黃廷合校閱,“奈米技術入門”, 全科圖書股份有限公司
[2]馬振基,“奈米材料科技原理與應用”, 全華科技圖書股份有限公司, 2004.
[3]A. Khorsand Zak, Razali, W. H. B. Abd Majid, and M. Darroudi, "Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles," International Journal of Nanomedicine, p. 1399, 2011.
[4]Y. Sun, D. J. Riley, and M. N. R. Ashfold, "Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates," The Journal of Physical Chemistry B, vol. 110, no. 31, pp. 15186-15192, 2006.
[5]X. H. Huang, X. H. Xia, Y. F. Yuan, and F. Zhou, "Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries," Electrochimica Acta, vol. 56, no. 14, pp. 4960-4965, 2011.
[6]M.-J. Kim, S.-H. Kim, H.-Y. Park, and Y.-D. Huh, "Morphological Evolution of Ag2O Microstructures from Cubes to Octapods and Their Antibacterial Activities," Bulletin of the Korean Chemical Society, vol. 32, no. 10, pp. 3793-3795, 2011.
[7]G. Wang et al., "Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities," Journal of Materials Chemistry, vol. 22, no. 39, p. 21189, 2012.
[8]徐明達,“細菌的世界”, 二魚文化事業股份有限公司, 2012.
[9]徐如人、龐文琴、魏明通,“無機合成與製備化學”, 五南圖書出版股份有限公司, 2004.
[10]B. G. Oliver, E. G. Cosgrove, and J. H. Carey, "Effect of suspended sediments on the photolysis of organics in water," Environmental Science & Technology, vol. 13, no. 9, pp. 1075-1077, 1979.
[11]胡振國譯“半導體元件–物理與技術”, 全華圖書公司, 1989.
[12]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, vol. 95, no. 1, pp. 69-96, 1995.
[13]APHA, Standard Methods for the Examination of Water and Wastewater (16thed). American Public Health Association: Washington D.C., 1985, pp. 201-204.
[14]T. Miwa et al., Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite, International Journal of Hydrogen Energy, vol. 35, no. 13, pp. 6554-6560, 2010.
[15]J. Yu, S. Zhuang, X. Xu, W. Zhu, B. Feng, and J. Hu, Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(vi), Journal of Materials Chemistry A, vol. 3, no. 3, pp. 1199-1207, 2015.
[16]S. Ma, J. Xue, Y. Zhou, and Z. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A, vol. 2, no. 20, pp. 7272-7280, 2014.
[17]張東憲,“奈米光觸媒應用於玻璃表面之自淨功能研究”, 國立臺灣科技大學營建工程系研究所, 2004.
[18]V. Lakshmi Prasanna and R. Vijayaraghavan, Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark, Langmuir, vol. 31, no. 33, pp. 9155-9162, 2015.
[19]Y. Li, W. Zhang, J. Niu, and Y. Chen, Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles, ACS Nano, vol. 6, no. 6, pp. 5164-5173, 2012.
[20]D. McShan, P. C. Ray, and H. Yu, Molecular toxicity mechanism of nanosilver, J Food Drug Anal, vol. 22, no. 1, pp. 116-127, 2014.
[21]E. Bressan et al., Silver nanoparticles and mitochondrial interaction, Int J Dent, vol. 2013, p. 312747, 2013.
[22]P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells, ACS Nano, vol. 3, no. 2, pp. 279-290, 2009.
[23]S. S. Khan, P. Srivatsan, N. Vaishnavi, A. Mukherjee, and N. Chandrasekaran, Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics, J Hazard Mater, vol. 192, no. 1, pp. 299-306, 2011.
[24]S. S. Khan, A. Mukherjee, and N. Chandrasekaran, Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species, Colloids Surf B Biointerfaces, vol. 87, no. 1, pp. 129-38, 2011.
[25]M. Ahamed et al., DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells, Toxicol Appl Pharmacol, vol. 233, no. 3, pp. 404-10, 2008.
[26]C. Levard et al., Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli, Environ Sci Technol, vol. 47, no. 11, pp. 5738-45, 2013.
[27]A. Sirelkhatim et al., Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Letters, vol. 7, no. 3, pp. 219-242, 2015.
[28]N. Padmavathy and R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study, Sci Technol Adv Mater, vol. 9, no. 3, p. 035004, 2008.
[29]S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, and K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater Sci Eng C Mater Biol Appl, vol. 44, pp. 278-84, 2014.
[30]M. Arakha, M. Saleem, B. C. Mallick, and S. Jha, The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle, Sci Rep, vol. 5, p. 9578, 2015.
[31]J. T. Weld, The Antibacterial Properties of Sulfur, Journal of Experimental Medicine, vol. 85, no. 5, pp. 531-542, 1947.
[32]L. Libenson, F. P. Hadley, A. P. McIlroy, V. M. Wetzel, and R. R. Mellon, Antibacterial Effect of Elemental Sulfur, The Journal of Infectious Diseases, vol. 93, no. 1, pp. 28-35, 1953.
[33]H. Zhang, G. Chen, and D. W. Bahnemann, Photoelectrocatalytic materials for environmental applications, Journal of Materials Chemistry, vol. 19, no. 29, p. 5089, 2009.
[34]Z. Xiong et al., Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition, International Journal of Hydrogen Energy, vol. 40, no. 32, pp. 10049-10062, 2015.
[35]J. Yang, Z. Li, W. Zhao, C. Zhao, Y. Wang, and X. Liu, Controllable synthesis of Ag–CuO composite nanosheets with enhanced photocatalytic property, Materials Letters, vol. 120, pp. 16-19, 2014.
[36]W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, Journal of Materials Chemistry, vol. 22, no. 9, p. 4050, 2012.
[37]S. P. Bhagaban Beheraa, Lizy Kanungob, Sunil Bhandb, Sudhir Chandraa, Synthesis and characterization of ZnO-ZnAl2O4 whiskers and their application in biosensors, Nanoscience Letters Journal, 2015.
[38]Y. Z. Zhang, S. Liu, G. C. Li, G. R. Li, and X. P. Gao, Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte, J. Mater. Chem. A, vol. 2, no. 13, pp. 4652-4659, 2014.
[39]Y. Diao, K. Xie, S. Xiong, and X. Hong, Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling, Journal of the Electrochemical Society, vol. 159, no. 11, pp. A1816-A1821, 2012.
[40]Y. Li, L. Zhang, X. Xiang, D. Yan, and F. Li, Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation, Journal of Materials Chemistry A, vol. 2, no. 33, p. 13250, 2014.
[41]H. A. Al-Hosney and V. H. Grassian, Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study, Physical Chemistry Chemical Physics, vol. 7, no. 6, p. 1266, 2005.
[42]C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys, Phys Rev Lett, vol. 97, no. 14, p. 146403, 2006.
[43]S.-Y. Hu, Y.-C. Lee, and B.-J. Chen, Characterization of calcined CuInS 2 nanocrystals prepared by microwave-assisted synthesis, Journal of Alloys and Compounds, vol. 690, pp. 15-20, 2017.
[44]A. J. Deotale and R. V. Nandedkar, Correlation between Particle Size, Strain and Band Gap of Iron Oxide Nanoparticles, Materials Today: Proceedings, vol. 3, no. 6, pp. 2069-2076, 2016.

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE