簡易檢索 / 詳目顯示

研究生: 楊旭東
Hsu-Tung Yang
論文名稱: 氨化鋰鹽電萃之鋰電池應用可行性分析
Feasibility study of applying ammonia-lithium salt electride to lithium battery
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 王復民
Fu-Ming Wang
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 鋰鹽氨氣氨化液體電萃液體導電率鋰硫電池
外文關鍵詞: Lithium salt, Ammonia gas, Ammoniated liquid, Electride solution, Ion conductivity, Lithium-sulfur battery
相關次數: 點閱:300下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這項研究中,我們研究了各種鋰鹽的氨化電萃溶液的電化學性質,以試圖將氨化電萃溶液用作Li-S電池中的液體電解質。鋰鹽包括LiBH4,LiClO4,LiNO3,LiTFSI,LiFSI,LiTriflate。氨化電萃溶液通常在放置於不銹鋼反應器中,在0.56 atm的氨氣分壓下形成。也可以將所述電萃溶液摻入Li-PAA樹脂中,並與20、30、40重量%的鋰鹽一起當作凝膠型電解質。
氨化的電子溶液的離子電導率很高,在室溫下通常約為10-3 S cm-1。LiClO4(或LiClO4 + LiNO3)的透明電萃溶液的離子電導率達到6x10-3 S cm-1。用循環伏安法測量電萃溶液的穩定性,發現電位窗口幾乎相同,為3.8 V。潛在的窗口大小主要取決於鋰鹽的氨化帶來的自由能下降。電位窗口大小對於Li-S電池已經足夠,其鋰離子電池的電位上限低於3.0 V.
氨化的電萃溶液不溶於多硫化物作為電解質。電萃溶液具有不溶多硫化物的巨大優勢,因為溶解的多硫化物會引起多硫化物的穿梭問題以及Li-S電池不可逆的電容量衰減。不幸的是,氨化的電萃溶液在直接接觸時也會與鋰金屬電極反應。我們嘗試了許多方法來保護氨化的電萃溶液免於與鋰金屬反應,但是失敗了。在鋰陽極上形成的類SEI無法提供足夠的氨防護。因此,我們組裝的Li-S電池是容量~1086 mA h g-1的一次電池。


In this study, we studied the electrochemical properties of ammoniated electride solutions of various lithium salts solvated by ammonia in an attempt to apply the ammoniated electride solution as the liquid electrolyte in the Li-S battery. The lithium salts include LiBH4, LiClO4, LiNO3, LiTFSI, LiFSI, LiTriflate. The ammoniated electride solution is generally formed in a stainless steel chamber under 0.56 atm ammonia in an argon atmosphere of 5.0 atm. The electride solution can also be incorporated in Li-PAA resin and utilized as a gel-type electrolyte with lithium salt 20, 30, 40 wt%.
The ion conductivity of the ammoniated electride solution is high, generally in the order of magnitude 10-3 S cm-1 at room temperature. The conductivity of the transparent electride solution of LiClO4 (or LiClO4+LiNO3) reaches 6x10-3 S cm-1. The stability of electride solutions is measured with cyclic voltammetry and found to be more and less the same, 3.8 V. The potential window size is mainly determined by the free energy benefits brought by ammonia solvation of lithium salts. The potential window size is sufficient for the Li-S battery, of which the upper potential limit is less than 3.0 V.
As an electrolyte, the ammoniated electride solution does not dissolve the polysulfides. The insoluble polysulfides in ammoniated electride solution offer a huge advantage over other electrolytes, since dissolved polysulfides cause the polysulfide shuttle problem and irreversible capacity decay of the Li-S battery. Unfortunately, the ammoniated electride solution also reacts with the lithium metal electrode upon direct contact. We have tried many approaches to protect the ammoniated electride solution from reaction with lithium metal, but failed. Common SEIs formed on the lithium anode cannot provide sufficient protection from ammonia. Consequently, the Li-S battery that we assembled is a primary battery with a capacity ~1086 mAh g-1.

摘要 I ABSTRACT III 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 6 2.1 液態電解質 6 2.2 鋰鹽氨電萃(Lithium ammonia electride)系統 7 2.3 膠態高分子電解質(GPE) 13 2.4 固態電解質(Solid electrolyte) 14 2.5 鋰硫電池 21 第三章 實驗方法與步驟 24 3.1實驗藥品耗材與儀器設備 24 3.1.1 實驗藥品 24 3.1.2 實驗儀器與設備 25 3.1.3 電化學測試儀器及設備 27 3.2實驗流程圖 28 3.2.1純鋰鹽氨化與Li-PAA添加鋰鹽氨化液體製作 28 3.2.2硫電極製作 29 3.2.3電化學量測組裝 30 3.2.4電化學分析 31 3.3實驗方法 32 3.3.1 Li-PAA與鋰鹽粉末製備 32 3.3.2 CR2032電池墊片前處理清洗 32 3.3.3 Li-PAA加鋰鹽的氨化處理 33 3.3.4 純鋰鹽氨化液體製備 33 3.3.5 電解質離子導電率電池製備 34 3.3.6 電解質之循環伏安法電池製備 34 3.3.7 觀察氨化液體/EDA/1,3-DAP與S和Li2S的混和溶解性 34 3.3.8 Li表面SEI層製作 35 3.3.9 硫電極製作 35 3.4電解質電化學特性分析 36 3.4.1交流阻抗分析(AC Impedance) 36 3.4.2循環伏安法(Cyclic Voltammetry) 38 第四章 結果與討論 39 4.1溶解性測試結果 39 4.1.1乙二胺EDA和1,3-DAP與S & Li2S溶解性 39 4.1.2 S & Li2S粉末在氨化鋰鹽溶液中的溶解 41 4.2氨化鋰鹽電萃液體 42 4.2.1 LiBH4+NH3 氨化電萃液體 42 4.2.2 LiFSI+NH3氨化電萃液體 43 4.2.3 LiTFSI+NH3氨化電萃液體 44 4.2.4 LiTriflate + NH3氨化電萃液體 45 4.2.5 LiClO4 + NH3氨化電萃液體 46 4.2.6 LiClO4 + LiNO3 + NH3 氨化電萃液體 47 4.3 AC交流阻抗分析 48 4.3.1 乙二胺EDA和1,3-DAP添加1M之LiClO4與LiNO3混和粉末 49 4.3.2 LiBH4 + NH3氨化電萃液體 50 4.3.3 LiFSI + NH3氨化電萃液體 51 4.3.4 LiTFSI + NH3氨化電萃液體 51 4.3.5 LiTriflate + NH3氨化電萃液體 52 4.3.6 LiClO4 + NH3氨化電萃液體 53 4.3.7 LiClO4 + LiNO3 + NH3氨化電萃液體 54 4.3.8 不同溫度下導電率測試 54 4.4 電化學循環伏安法(Cyclic Voltammetry) 59 4.4.1 LiFSI + NH3氨化電萃液體 59 4.4.2 LiTFSI + NH3氨化電萃液體 60 4.4.3 LiTriflate + NH3氨化電萃液體 61 4.4.4 LiClO4 + NH3氨化電萃液體 62 4.4.5 LiClO4 + LiNO3 + NH3氨化電萃液體 63 4.5 鋰硫電池充放電測試 64 4.5.1 以LiPAA+LiClO4+NH3-0.56atm-48hr作為電解質 64 4.5.2 以LiPAA+LiClO4+LiNO3+NH3-0.56atm-48hr作為電解質 67 4.6 鋰金屬表面SEI層製作與氨化電萃液體反應之結果 68 第五章 結論 71 參考文獻 72

[1] M. Winter and R. J. Brodd, "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, no. 10, pp. 4245-4270, 2004/10/01 2004.
[2] F. N. Daud, A. Ahmad, and K. H. Badri, "Characterisations of Palm-Based Polyurethane Solid Polymer Electrolyte," Advanced Materials Research, vol. 1107, pp. 163-167, 2015.
[3] N. Azimi, Z. Xue, S. S. Zhang, and Z. Zhang, "Materials and technologies for rechargeable lithium–sulfur batteries," pp. 117-147, 2015.
[4] T. Na et al., "Electrocatalytic polysulfide transformation for suppressing the shuttle effect of Li-S batteries," Applied Surface Science, vol. 528, p. 146970, 2020.
[5] L. Long, S. Wang, M. Xiao, and Y. Meng, "Polymer electrolytes for lithium polymer batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10038-10069, 2016.
[6] X. Wu et al., "Electrolyte for lithium protection: From liquid to solid," Green Energy & Environment, vol. 4, no. 4, pp. 360-374, 2019.
[7] A. Nandy and J. Smiatek, "Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents?," Phys Chem Chem Phys, vol. 21, no. 23, pp. 12279-12287, Jun 21 2019.
[8] H. Ogawa and H. Mori, "Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study," Phys Chem Chem Phys, vol. 22, no. 16, pp. 8853-8863, Apr 29 2020.
[9] T. Zhang et al., "Ammonia, a Switch for Controlling High Ionic Conductivity in Lithium Borohydride Ammoniates," Joule, vol. 2, no. 8, pp. 1522-1533, 2018.
[10] Y. Song, F. Wu, X. Zheng, X. Ma, F. Fang, and Y. Guo, "Stepwise combination of NH3 with BH4(-) in metal borohydride ammoniate," Chem Commun (Camb), vol. 51, no. 6, pp. 1104-7, Jan 21 2015.
[11] "<[9]Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor.pdf>."
[12] "<[10]Dehydrogenation Promotion of LiBH4 · NH3 Through Heating in Ammonia or Mixing with Metal Hydrides.pdf>."
[13] S. R. Johnson et al., "The monoammoniate of lithium borohydride, Li(NH3)BH4: an effective ammonia storage compound," Chem Asian J, vol. 4, no. 6, pp. 849-54, Jun 2 2009.
[14] K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang, "Symmetric redox supercapacitor with conducting polyaniline electrodes," Journal of Power Sources, vol. 103, no. 2, pp. 305-309, 2002/01/01/ 2002.
[15] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 359-67, Nov 15 2001.
[16] K. H. Park et al., "Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries," Advanced Energy Materials, vol. 8, no. 18, p. 1800035, 2018.
[17] Y. Meesala, A. Jena, H. Chang, and R.-S. Liu, "Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries," ACS Energy Letters, vol. 2, no. 12, pp. 2734-2751, 2017.
[18] J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, "Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes," Progress in Polymer Science, vol. 81, pp. 114-143, 2018.
[19] S. L. Candelaria et al., "Nanostructured carbon for energy storage and conversion," Nano Energy, vol. 1, no. 2, pp. 195-220, 2012.
[20] A. Zalewska, "New poly(acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization," Solid State Ionics, vol. 157, no. 1-4, pp. 233-239, 2003.
[21] L. Ye and Z. Feng, "Polymer electrolytes as solid solvents and their applications," pp. 550-582, 2010.
[22] "<[20]Structure of an amorphous polymer electrolyte PEO-LiCF3SO3 Chem. Commun. (1997) 157-158..pdf>."
[23] M. M. Hiller, M. Joost, H. J. Gores, S. Passerini, and H. D. Wiemhöfer, "The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes," Electrochimica Acta, vol. 114, pp. 21-29, 2013.
[24] "<[22]PEO_t+0.14_TFSI_JPS.pdf>."
[25] J. Yang et al., "High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation," Front Chem, vol. 7, p. 388, 2019.
[26] J. Zhang, X. Huang, H. Wei, J. Fu, W. Liu, and X. Tang, "Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers," New Journal of Chemistry, vol. 35, no. 3, p. 614, 2011.
[27] S. Xue, Y. Liu, Y. Li, D. Teeters, D. W. Crunkleton, and S. Wang, "Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)3:LiCF3SO3 Polymer Electrolytes," Electrochimica Acta, vol. 235, pp. 122-128, 2017.
[28] Y. Zhao et al., "A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries," Solid State Ionics, vol. 295, pp. 65-71, 2016.
[29] B. Chen et al., "A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery," Electrochimica Acta, vol. 210, pp. 905-914, 2016.
[30] D. He et al., "The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries," Applied Surface Science, vol. 525, p. 146625, 2020.
[31] M. Galiński, A. Lewandowski, and I. Stępniak, "Ionic liquids as electrolytes," Electrochimica Acta, vol. 51, no. 26, pp. 5567-5580, 2006.
[32] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling," Carbon, vol. 105, pp. 52-76, 2016.
[33] K. Torchała, K. Kierzek, and J. Machnikowski, "Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes," Electrochimica Acta, vol. 86, pp. 260-267, 2012.
[34] H. Hao, S. Xiaogang, C. Wei, L. Rui, Z. Jingyi, and H. Qiang, "Lithium-Ion Capacitors with TME Lithium Powder Pre-embedded for Tetramethylethylene Applications," Journal of Electronic Materials, vol. 49, no. 6, pp. 4045-4052, 2020.

QR CODE