簡易檢索 / 詳目顯示

研究生: 沈宥昇
You-Sheng Shen
論文名稱: 游標卡尺法之時間至數位轉換器
A Vernier-Based Time-to-Digital Converter
指導教授: 陳伯奇
Poki Chen
口試委員: 羅有綱
none
宋國明
none
姚嘉瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 136
中文關鍵詞: 游標卡尺法時間至數位轉換器鎖相迴路
外文關鍵詞: vernier, TDC, PLL
相關次數: 點閱:261下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

時間至數位轉換器目前廣泛被運用在許多量測儀器與電路中,迄今已發展出各式架構以求在不同需求上獲得解決。其中,游標卡尺法在追求高解析度上為眾多方法中之翹楚,然而其量測範圍無法超過一個參考週期、元件不匹配以致於須使用繁複的校正方式等,在架構上皆是無可避免之缺憾。為此,本研究團隊於2005年率先提出一個具自我校準之游標卡尺法時間至數位轉換器,借重鎖相迴路具自我校準能力,以抑制單級游標卡尺延遲線的電壓、溫度與製程變異,使該架構在不同環境因素下能保有相同解析度,但經實際量測,在量測較長時間寬度時仍有不可小覷的誤差。本論文延續原有架構,針對其架構上的缺陷,將粗計數器之參考脈鐘確實交由鎖相迴路負責,以去除原有複製品不穩定之特性,並改善架構來壓抑上述誤差。於此同時,引入雙倍資料傳輸概念,在電路複雜度近乎不變,和整體頻率完全相同的情況下,使解析度倍增。本電路實現於TSMC 2P4M 0.35μm製程,晶片面積僅有0.342mm2。經由HSpice模擬,預計最佳解析度可達12.5ps,量測頻率在1MHz/sec,解析度在25ps情況下功率消耗60mW。


The time-to-digital converters (TDC) are commonly used in many instrumentation systems or equipments. So far, many kinds of structure were developed for every different requirement. Among these structures, the vernier time-to-digital converter is the best at highly accurate time resolution. However, the input range cannot exceed one period of the reference clock, and the complex calibration mechanism is used for the mismatch between elements. Therefore, a new vernier-based TDC with dual phase-locked loops (PLL) was proposed to improve the two disadvantages, but with wider input range. In fact, when using the TDC in measuring long time period between two signals, there are many errors in this application. In order to improve these problems, we feed the reference clock of coarse counter from the voltage-controlled oscillator in PLL. Besides, with the same circuit complexity and operating frequency, we imply technology of double data rate to increase the time resolution. The proposed TDC has been implemented in 0.35μm standard 2P4M CMOS technology. By simulating in HSpice, the expected time resolution is 12.5ps. The power consumption is 60mW, and the chip size is as small as 0.342mm2.

目 錄 第一章序論 1 1-1 研究動機 1 1-2 內容編排方式 4 第二章 時間至數位轉換器介紹 5 2-1 計數器法 6 2-2 脈衝寬度拓展法 8 2-3 脈衝縮減延遲法 12 2-4 現場可程式閘陣列為主體 15 2-5 游標卡尺法及其分支 19 2-6 各種類型比較 25 第三章 鎖相迴路 26 3-1 鎖相迴路介紹與應用 27 3-1-1 線性鎖相迴路(Linear PLL, LPLL) 28 3-1-2 半數位鎖相迴路(Half-Digital PLL, HDPLL) 29 3-1-3 全數位鎖相迴路(All-Digital PLL, ADPLL) 31 3-1-4 鎖相迴路之應用 32 3-2 相位頻率偵測器 36 3-3 電荷幫浦 43 3-4 電壓控制振盪器 52 3-5 除頻器 61 3-5-1 TPSC電路 62 3-5-2 除2電路 63 3-5-3 除3/4電路 63 3-5-4 除15/16電路 64 3-6 具雜訊補嘗的緩衝器 66 3-7 迴路濾波器與鎖相迴路穩定性分析 68 第四章 電路設計與模擬 81 4-1 設計流程與考量 81 4-2 改良前之時間至數位轉換器 83 4-3 新型時間至數位轉換器 85 4-4 雙倍資料傳輸電路設計與模擬 93 4-5 相位頻率偵測器電路設計與模擬 96 4-6 充電幫浦電路設計與模擬 98 4-7 可觸發壓控振盪器之電路設計與模擬 100 4-8 迴路濾波器電路設計與模擬 102 4-9 除頻器電路設計與模擬 103 4-10 鎖相迴路整體功能模擬 105 4-11 相位比較器之設計與模擬 108 4-12 新型時間至數位轉換器模擬 111 4-13 佈局考量 113 第五章 結論與未來展望 115 5-1 測試考量 115 5-1-1 量測步驟 120 5-2 總結 121 5-3 未來展望 121 參考文獻 123

[1] J. Nissinen, P. Palojarvi, and J. Kostamovaara, “A CMOS Receiver for a Pulsed Time-of-Flight Laser Rangefinder,” in proc. IEEE ESSCIRC, Sept. 2003, pp. 325-328.
[2] K. Park, and J. Park, “20ps Resolution Time-to-Digital Converter for Digital Storage Oscilloscopes,” IEEE Trans. Nucl. Sci., vol. 2, pp. 876-881, Nov. 1998.
[3] T. Xia, H. Zheng, J. Li, and A. Ginawi, “Self-Refereed on-chip Jitter Measurement Circuit Using Vernier Oscillators,” in proc. IEEE VLSI, May 2005, pp.218-223.
[4] ACAM Messelectronic, “TDCs Applications,” http://www.acam.de/
[5] W. Chang, M.-H. Chiang, and P. Chen, “A Highly Accurate Cyclic CMOS Time to Digital Converter with Temperature Compensation,” in proc. The 14th VLSI Design/CAD Symposium, Aug. 2003.
[6] R. Nutt, “Digital Time Inervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, 1968.
[7] I. Nissinen, A. Mantyniemi, and J. Kostamovaara, “A CMOS Time-to-Digital Converter Based on a Ring Oscillator for a Laser Radar,” in proc. IEEE ESSCIRC, Setp. 2003, pp 469-472.
[8] P. Chen, C.-C. Chen, and Y.-S. Shen, “A Low Cost Low Power CMOS Time-to-Digital Converter Based on Pulse Stretching,” IEEE Trans. Nucl. Sci., vol. 53, no.4, pp. 2215-2220, Aug. 2006.
[9] B. K. Swann, B. J. Blalock, L. G. Clonts, D. M. Binkley, J. M. Rochelle, E. Breeding, and K. M. Baldwin, “A 100-ps Time-Resolution CMOS Time-to-Digital Converter for Positron Emission Tomography Imaging Applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 1839-3852, Nov. 2004.
[10] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 30, pp.984–990, Sept. 1995.
[11] P. Chen, S.-I. Liu, and J. Wu, “Highly Accurate Cyclic CMOS Time-to-Digital Converter with Extremely Low Power Consumption,” IEEE Electronics Letters, vol. 33, pp.858–860, May 1997.
[12] W. Chang, M.-H. Chiang, and P. Chen, “A Highly Accurate Cyclic CMOS Time to Digital Converter with Temperature Compensation,” in proc. The 14th VLSI Design/CAD Symposium, Aug. 2003.
[13] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, “Field–Programmable -Gate-Array-Based Time-to-Digital Converter with 200-ps Resolution,” IEEE Trans. Instrum. Meas., vol. 46, pp. 51-55, Feb. 1997.
[14] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of Field-Programmable Gate Arrays,” in proc. IEEE, vol. 81, pp.1013-1029, July 1993.
[15] S.D.Brown et al., “Field-Programmable Gate Arrays,” Norwell, MA: Kluwer, 1992.
[16] R. Pelka, J. Kalisz, and R. Szplet, “Nonlinearity Correction of the Integrated Time-to-Digital Converter with Direct Coding,” IEEE Trans. Instrum. Meas., vol.46, pp. 449-453, Apr. 1997.
[17] T.-I. Otsuji, “A Picosecond-Accuracy, 700-MHz Range, Si-Bipolar Time Interval Counter LSI,” IEEE J. Solid-State Circuits, vol. 28, pp. 941-947, Sept. 1993.
[18] T. E. Rahkonen and J. T. Kostamovaara, “The Use of Stabilized CMOS Delay Lines for the Digitization of Short Time Intervals,” IEEE J. Solid-State Circuits, vol. 28, pp. 887–894, Aug.1993.
[19] C. T. Gray, W. Liu, W. A. M. Van Noije, T. A. Hughes, Jr., and R. K. Cavin III, “A Sampling Technique and Its CMOS Implementation with 1Gb/s Bandwidth and 25ps Resolution,” IEEE J. Solid-State Circuits, vol. 29, pp. 340-349, March 1994.
[20] P. Dudek, S. Szczepan´ski, and J. V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE J. Solid-State Circuits, vol. 35, pp. 240-247, Feb. 2000.
[21] V. Ramakrishnan, and P. T. Balsara, “A Wide-Range, High-Resolution, Compact, CMOS Time to Digital Converter,” in proc. the 19th IEEE VLSI Design, pp. 6, Jan. 2006.
[22] A.H. Chan, and G.W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using a Single-Stage Vernier Delay Line,” in proc. IEEE CICC, pp. 77-80, May 2002.
[23] P. Chen, J.-C. Zheng, and C.-C. Chen, “A Monolithic Vernier-Based Time-to-Digital Converter with Dual PLLs for Self-Calibration,” in proc. IEEE CICC, pp. 321-324, Setp. 2005.
[24] R.-J. Yang, S.-P. Chen, and S.-I. Liu, “A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet,” IEEE J. Solid-State Circuits, vol. 39, pp. 1356-1360, Aug. 2004.
[25] C.-K. K. Yang, R. Farjad-Rad, and M. A. Horowitz, “A 0.5-μm CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery Using Oversampling,” IEEE J. Solid-State Circuits, vol. 33, pp. 713–722, May 1998.
[26] J. S. Lee, W. K. Jin, D. M. Choi, G. S. Lee, and S. Kim, “A Wide Range PLL for 64X Speed CD-ROMs & 10X Speed DVD-ROMs,” IEEE Trans. Consumer Electron., vol. 46, pp. 487-493, Aug. 2000.
[27] B. G. Goldberg, “The evolution and maturity of fractional-N PLL synthesis,” Microwave J., vol. 39, no. 9, Sept. 1996.
[28] V. von Kaenel, D. Aebischer, C. Piguet, and E. Dijkstra, “A 320MHz, 1.5 mW @ 1.35 V CMOS PLL for Microprocessor Clock Generation,” IEEE J. Solid-State Circuits, vol. 31, pp. 1715-1722, Nov. 1996.
[29] B. Razavi, “Design of analog CMOS integrated circuits,” McGRAW-HILL publishers, 2000.
[30] J.-R. Yang, “Phase-Locked Loop,” Yuan Ze University.
[31] H. Kondoh et al., “A 1.5V 250 MHz to 3.0V 622MHz Operation CMOS Phase-Locked Loop with Precharge Type Phase Frequency Detector,” IECE Trans. Electron, vol. E78-C, no. 4, pp. 381-388, Apr. 1995.
[32] H. O. Johansson, “A Simple Precharged CMOS Phase Frequency Detector,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 295-299, Feb. 1998.
[33] S. Kim et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no.5, pp. 691-700, May 1997.
[34] A. Maxim, “Low-Voltage CMOS Charge-Pump PLL Architecture for Low Jitter Operation,” in proc. IEEE ESSCIRC, pp. 423-426, 2002.
[35] S. Kim et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no.5, pp. 691-700, May 1997.
[36] J. G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE J. Solid-State Circuits, pp.1723-1732, Nov. 1996.
[37] M. Mansuri, D. Liu, and C.-K. K. Yang, “Fast Frequency Acquisition Phase-Frequency Detectors for GSamples/s Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1331-1334, Oct. 2002.
[38] W. Rhee, “Design of High-Performance CMOS Charge Pumps in Phase-Locked Loops,” in Proc. IEEE ISCAS, vol. 2, pp. 545-548, June 1999.
[39] J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, “Charge Pump with Perfect Current Matching Characteristics in Phase-Locked Loops,” IEEE Electronics Letters, vol. 36, pp. 1907-1908, Nov. 2000.
[40] T. S. Fiez, D. J. Allstot, G. Liang, and P. Lao, “Signal-Dependent Clock Feedthrough Cancellation in Wwitched-Current Circuits,” in proc. IEEE Circuits Syst., June 1991, pp. 785–788.
[41] E. A. VIittoz, and O. Neyround, “A Low-Voltage CMOS Bandgap Reference,” IEEE J. Solid-State Circuits, vol. 14, pp. 573-579, Jun. 1979.
[42] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” in proc. IEEE ISCAS, vol. 1, pp. 368-371, May 2001.
[43] M. Tuthill, “A Switched-Current, Switched-capacitor Temperature Sensor in 0.6-um CMOS,” IEEE J. Solid-State Circuits, vol. 33, pp. 1117-1122, July 1998.
[44] P. Larsson, “A 2-1600-MHz CMOS Clock Recovery PLL with Low-Vdd Capability,” IEEE J. Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.
[45] P. Larsson, “Measurement and Analysis of PLL Jitter caused by Digital Switching Noise,” IEEE J. Solid-State Circuits, vol. 36, pp. 1113–1119, July 2001.
[46] N. M. Nguyen, and R. G. Meyer, “Start-Up and Frequency Stability in High-Frequency Oscillators,” IEEE J. Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[47] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and Phase Noise in Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 790-804, June 1999.
[48] K.-H. Cheng, and W.-B. Yang, “A Low Power, Wide Operating Frequency and High Noise Immunity Half-Digital Phased-Locked Loop,” in proc. IEEE ASIC, pp. 263-266, Aug. 2002.
[49] I.-C. Hwang, C. Kim, and S.-M. Kang, “A CMOS Self-regulating VCO with Low Supply Sensitivity,” IEEE J. Solid-State Circuits, vol. 39, pp. 42-48, Jan. 2004.
[50] J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-State Circuits, vol. 24, pp. 62-67, Feb. 1989.
[51] J. Yuan and C. Svensson, “New Single-Clock CMOS Latches and Flipflops with Improved Speed and Power Savings,” IEEE J. Solid-State Circuits, vol. 32, pp. 62-69, Jan. 1997.
[52] C.-Y. Yang, G.-K. Dehng, S.-I. Liu; “High-Speed Divide-by-4/5 Counter for a Dual-Modulus Prescaler,” IEEE Electronics Letters, vol. 33, pp. 1691-1692, Sept. 1997.
[53] M. Mansuri, and C.-K. K. Yang, “A Low-Power Low-Jitter Adaptive Bandwidth PLL and Clock Buffer,” in proc. IEEE ISSCC, vol. 1, 2003, pp. 430-505.
[54] Behzad Razavi, “Monolithic Phase-Locked Loops and Clock Recovery Circuits - Theory and Design,” IEEE Press 1996.
[55] F. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. Commun., vol. 28, pp. 1849-1858, Nov. 1980.
[56] M. Mansuri, “Low-Power Low-Jitter On-Chip Clock Generation”, Dissertation, University of California Los Angeles, 2003.
[57] P. Chen, C.-C. Chen, J.-C. Zheng, and Y.-S. Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter with Extended Input Range and High Accuracy,” IEEE Trans. Nucl. Sci., vol. 54, pp. 294-302, April 2007.
[58] C. Brown, and K. Feher, “Measuring Metastability and Its Effect on Communication Signal Processing Systems,” IEEE Trans. Instrum. Meas., vol. 46, pp. 61- 64, Feb. 1997.
[59] P. Gui et al., “A Source-Synchronous Double-Data-Rate Parallel Optical Transceiver IC,” IEEE Trans. VLSI Syst., vol. 13, pp. 833-842, July 2005.
[60] N. Weste, and K. Eshraghian, “Principles of CMOS VLSI design,” Addison Wesley, 1993.
[61] B. Razavi, “A study of injection pulling and locking in oscillators,” in proc. IEEE CICC, pp. 21-24, Sept. 2003.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE