簡易檢索 / 詳目顯示

研究生: 彭為駿
Wei-Jun Peng
論文名稱: 線放電成形與同步銳利化多晶鑽石刀具之最佳化研究
Optimization on shaping and sharpening in WEDM of polycrystalline diamond tool
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 蔡宏營
Hung-Yin Tsai
鍾俊輝
Chun-Hui Chung
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 多晶鑽石線放電加工材料移除率表面粗糙度刀尖半徑波動層反應曲面法
外文關鍵詞: polycrystalline diamond, wire electrical discharge machining
相關次數: 點閱:514下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用線電極放電,用以切削多晶鑽石材料,並製作鑽石刀
具。再以線電極加工,對此刀具進行銳利化,同時對材料移除率、表
面粗糙度、刀尖半徑以及波動層進行最佳化之研究。此製程為鑽石線
鋸用以成形刀片及鑽石研磨應用於銳利化刀具的替代方案,同時以不
降低其刀具表面完整性之規範,進行大量生產。本研究中,使用全因
子實驗(2 × 3 × 3)的方式來評估操作參數(開路電壓、脈衝放電時
間、脈衝休止時間)對觀測指標的影響。實驗結果會透過變異數分析
(Analysis of variance)來檢驗參數對觀測指標之顯著性以及貢獻度,
以得到單一指標最佳化之參數組合。此外,本研究以迴歸方程式
(Regression equations)來建立各參數與指標之間之關係模型。在使
用者決策方程式下,給予各指標權重,進行無因次化之函數疊加,建
立目標方程式,以架構反應曲面(Response surface methodology),達
到多指標最佳化之結果。實驗結果顯示,在操作參數為開路電壓120
V、脈衝放電時間0.35 μs 及脈衝休止時間30 μs 時,其材料移除率最
高(12.71 mg / min)。而在開路電壓為100 V、脈衝放電時間為0.25
μs 以及脈衝休止時間為50 μs 時,其表面粗糙度最精細(Ra 1.38 μm)。
在反應曲面之最佳化中,結果顯示當權重分配為Ra: 50%及MRR:
50%之情形下進行目標方程式之演算,可以得到最佳化之結果為
MRR 10.503 mg / min、Ra 1.70 μm。同時在另一個權重分配(Ra: 80%、
MRR: 20%)下,最佳化之結果則為MRR 5.385 mg / min、Ra 1.462 μm。


Machining of polycrystalline diamond tools is challenging due to its
high hardness, and high elastic modulus. When shaping of polycrystalline
diamond, it is limited to diamond-wire sawing whereas the associated
sharpening process is constrained by diamond-wheel grinding. This paper
presents an alternative solution for shaping and sharpening of diamond
tools by using wire electrical discharge machining (WEDM) without
degradation on their tool geometry and surface integrity. In this work, the
full factorial experiments (2×3×3) were carried out for the evaluations of
the open voltage, pulse on-time, pulse off-time on the material removal
rate, surface roughness, asperity and edge radius in the roughing tests.
Statistical methods based on ANOVA are used for the analysis and
examinations. In processing, when open voltage 100 V, current 30 A, pulse
on-time 0.25 μs, pulse off-time 50 μs are employed, the low surface
roughness of Ra 1.38 μm is produced, with the corresponding material
removal rate of 4.84 mg / min. The developed multiple criteria model in
RSM, suggests the optimized parameter set and results when weightings of
material removal rate and surface roughness are given.

摘要 ............................................................................................................. I Abstract ...................................................................................................... II 致謝 ........................................................................................................... III 目錄 .......................................................................................................... IV 圖目錄 ...................................................................................................... VI 表目錄 .................................................................................................... VIII 第一章 研究介紹 ................................................................................... 1 第二章 文獻回顧 ................................................................................... 2 2.1 多晶鑽石之製造程序與加工方法 .......................................... 2 2.2 操作參數對線放電加工之影響 .............................................. 3 2.3 介電溶液對線放電加工之影響 .............................................. 6 2.4 線放電加工製程最佳化之相關研究 ...................................... 8 2.5 變異數分析 .............................................................................. 9 2.6 反應曲面法 ............................................................................ 10 第三章 實驗工作 ................................................................................. 11 3.1 實驗簡介 ................................................................................ 11 3.2 實驗材料 ................................................................................ 11 3.3 等距離線放電加工治具 ........................................................ 12 3.4 觀測指標 ................................................................................ 13 3.5 實驗方法 ................................................................................ 14 3.5.1 實驗設置 ....................................................................... 14 3.5.2 放電波形量測 ............................................................... 15 3.5.3 材料移除率量測 ........................................................... 17 3.5.4 表面粗糙度量測 ........................................................... 17 3.5.5 加工面波動層與刀尖半徑之量測 ............................... 18 V 3.6 實驗設計 ................................................................................ 20 3.6.1 焦耳熱效應 ................................................................... 20 3.6.2 材料移除率模型 ........................................................... 21 3.6.3 表面粗糙度模型 ........................................................... 22 3.6.4 全因子實驗設計 ........................................................... 23 3.7 統計與檢定方法 .................................................................... 24 3.8 驗證測試 ................................................................................ 26 第四章 實驗結果與討論 ..................................................................... 27 4.1 放電加工之電壓與電流波形 ................................................ 27 4.2 材料移除率 ............................................................................ 30 4.3 表面粗糙度 ............................................................................ 32 4.4 刀尖半徑 ................................................................................ 34 4.5 加工表面波動層 .................................................................... 36 4.6 顯微組織 ................................................................................ 40 4.7 理論模型與實驗數據之比較 ................................................ 41 4.8 單一指標最佳化結果 ............................................................ 42 4.9 多指標最佳化 ........................................................................ 43 4.10 驗證測試之結果 .................................................................... 46 第五章 結論與未來展望 ..................................................................... 48 5.1 文獻回顧總結 ........................................................................ 48 5.2 研究結果總結 ........................................................................ 48 5.3 未來展望 ................................................................................ 49 參考文獻 ................................................................................................... 50 附錄一 ....................................................................................................... 53 附錄二 ....................................................................................................... 56

[1] E.M. Trent, P.K. Wright, Chapter 8 - Cutting tool materials III:
Ceramics, CBN diamond, Metal Cutting (Fourth Edition),
Butterworth-Heinemann, Woburn, 2000, pp. 227-249.
[2] D.A. Axinte, D.S. Srinivasu, M.C. Kong, P.W. Butler-Smith, Abrasive
waterjet cutting of polycrystalline diamond: A preliminary
investigation, International Journal of Machine Tools and
Manufacture, 49 (2009) 797-803.
[3] C. Dold, M. Henerichs, L. Bochmann, K. Wegener, Comparison of
Ground and Laser Machined Polycrystalline Diamond (PCD) Tools
in Cutting Carbon Fiber Reinforced Plastics (CFRP) for Aircraft
Structures, Procedia CIRP, 1 (2012) 178-183.
[4] Y. Ogawa, M. Ota, K. Nakamoto, T. Fukaya, M. Russell, T.I. Zohdi,
K. Yamazaki, H. Aoyama, A study on machining of binder-less
polycrystalline diamond by femtosecond pulsed laser for fabrication
of micro milling tools, CIRP Annals, 65 (2016) 245-248.
[5] P.-L. Tso, Y.-G. Liu, Study on PCD machining, International Journal
of Machine Tools and Manufacture, 42 (2002) 331-334.
[6] C. Kuo, H. Kao, H. Wang, Novel design and characterisation of
surface modification in wire electrical discharge machining using
assisting electrodes, Journal of Materials Processing Technology, 244
(2017) 136-149.
[7] T.Y. Tai, K.T. Nguyen, The Grain Size Effect of Polycrystalline
Diamond on Surface Integrity by Using Micro EDM, Procedia CIRP,
42 (2016) 305-310.
[8] M. Galindo-Fernandez, C. Diver, W. Leahy, The Prediction of Surface
Finish and Cutting Speed for Wire Electro-discharge Machining of
Polycrystalline Diamond, Procedia CIRP, 42 (2016) 297-304.
[9] C. Gao, Z. Zhan, S. Wang, N. He, L. Li, Research on WEDM Process
Optimization for PCD Micro Milling Tool, Procedia CIRP, 6 (2013)
209-214.
51
[10] P. Fonda, K. Katahira, Y. Kobayashi, K. Yamazaki, WEDM condition
parameter optimization for PCD microtool geometry fabrication
process and quality improvement, The International Journal of
Advanced Manufacturing Technology, 63 (2012) 1011-1019.
[11] M.-T. Yan, T.-C. Lin, Development of a Pulse Generator for Rough
Cutting of Oil-based Micro Wire-EDM, Procedia CIRP, 42 (2016)
709-714.
[12] M. Iwai, S. Ninomiya, K. Suzuki, EDM Properties of Newly
Developed PCD Made Up of Electrically Conductive Diamond
Particles, Procedia CIRP, 6 (2013) 140-145.
[13] Z. Qinjian, Z. Luming, L. Jianyong, C. Yonglin, W. Heng, C. Yunan,
S. Haikuo, Y. Xiaoqing, L. Minzhi, Study on Electrical Discharge and
Ultrasonic Assisted Mechanical Combined Machining of
Polycrystalline Diamond, Procedia CIRP, 6 (2013) 589-593.
[14] M. Iwai, S. Ninomiya, K. Suzuki, Improvement of EDM Properties
of PCD with Electrode Vibrated by Ultrasonic Transducer, Procedia
CIRP, 6 (2013) 146-150.
[15] M.T. Yan, G.R. Fang, Y.T. Liu, J.R. Li, Fabrication of Polycrystalline
Diamond Wheels by Micro Wire-EDM using a Novel Pulse Generator,
Procedia CIRP, 6 (2013) 203-208.
[16] M. Mahardika, G.S. Prihandana, T. Endo, T. Tsujimoto, N.
Matsumoto, B. Arifvianto, K. Mitsui, The parameters evaluation and
optimization of polycrystalline diamond micro-electrodischarge
machining assisted by electrode tool vibration, The International
Journal of Advanced Manufacturing Technology, 60 (2012) 985-993.
[17] 顏木田, 莊明翔, 使用油加工液微線切割放電加工之研究, 中國
機械工程學會第二十四屆全國學術研討會, 3 (2008) 285-289.
[18] S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled
water as dielectrics on the electric discharge machining characteristics
of Ti–6A1–4V, Journal of Materials Processing Technology, 87 (1999)
107-111.
52
[19] H. Takino, T. Ichinohe, K. Tanimoto, K. Nomura, M. Kunieda,
Contouring of polished single-crystal silicon plates by wire electrical
discharge machining, Precision Engineering, 31 (2007) 358-363.
[20] R. Soundararajan, A. Ramesh, N. Mohanraj, N. Parthasarathi, An
investigation of material removal rate and surface roughness of
squeeze casted A413 alloy on WEDM by multi response optimization
using RSM, Journal of Alloys and Compounds, 685 (2016) 533-545.
[21] N. Sharma, A. Singh, R. Sharma, Deepak, Modelling the WEDM
Process Parameters for Cryogenic Treated D-2 Tool Steel by
Integrated RSM and GA, Procedia Engineering, 97 (2014) 1609-1617.
[22] E.U. Enemuoh, A.S. El-Gizawy, A. Chukwujekwu Okafor, An
approach for development of damage-free drilling of carbon fiber
reinforced thermosets, International Journal of Machine Tools and
Manufacture, 41 (2001) 1795-1814.
[23] R.K. Roy, A Primer on the Taguchi Method, Second Edition, Society
of Manufacturing Engineers, 2010.
[24] S. Chatterjee, A.S. Hadi, Regression Analysis by Example, Wiley,
2013.
[25] J. Kozak, K.P. Rajurkar, N. Chandarana, Machining of low electrical
conductive materials by wire electrical discharge machining
(WEDM), Journal of Materials Processing Technology, 149 (2004)
266-271.
[26] J. Marafona, J.A.G. Chousal, A finite element model of EDM based
on the Joule effect, International Journal of Machine Tools and
Manufacture, 46 (2006) 595-602.
[27] Q.H. Zhang, R. Du, J.H. Zhang, Q.B. Zhang, An investigation of
ultrasonic-assisted electrical discharge machining in gas,
International Journal of Machine Tools and Manufacture, 46 (2006)
1582-1588.

QR CODE