簡易檢索 / 詳目顯示

研究生: 黎羽真
Yu-Zhen Li
論文名稱: 釩酸鉍修飾石墨氈作為高效釩液流電池之負極電極研究
BiVO4 Decorated on Graphite Felt as Negative Electrode for High-Performance Vanadium Redox Flow Battery
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
游進陽
Chin-Yang Yu
葉禮賢
Li-Hsien Yeh
Daniel Manaye Kabtamu
Daniel Manaye Kabtamu
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 82
中文關鍵詞: 全釩液流電池電極表面改質釩酸鉍氧空缺
外文關鍵詞: Vanadium redox flow battery, electrode surface modification, Bismuth Vanadate, oxygen vacancies
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 全釩液流電池介紹 5 1.3 全釩液流電池特性分析 10 1.3.1 全釩液流電池作為大型儲能系統之優勢 10 1.3.2 全釩液流電池之缺點與面臨的挑戰 13 1.4 研究動機與目的 14 第二章 文獻回顧 16 2.1 釩離子反應機制 16 2.2 改質負極電極之材料 18 2.3 釩酸鉍 (Bismuth Vanadate, BiVO4) 22 第三章 實驗步驟與方法 23 3.1 實驗規劃 23 3.2 實驗藥品與材料 25 3.3 實驗儀器設備 26 3.4 儀器分析原理 27 3.4.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 27 3.4.2 X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 28 3.4.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 30 3.4.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 32 3.4.5 接觸角量測儀 34 3.5 實驗步驟 36 3.6 電化學測試 37 第四章 結果與討論 40 4.1 觸媒結構與性質分析 40 4.1.1 SEM影像分析 40 4.1.2 XRD晶體結構分析 41 4.1.3 TEM影像分析 42 4.1.4 XPS表面分析 44 4.1.5 接觸角分析 47 4.2 電化學效能分析 49 4.2.1 循環伏安法(Cyclic Voltammetry, CV) 49 4.2.2 電化學阻抗分析(Electrochemical impedance spectroscopy, EIS) 51 4.2.3 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 54 4.2.4 單電池效能分析 56 第五章 結論 62 第六章 參考文獻 63

[1] State of the Global Climate 2020, World Meteorological Organization, 2021.
[2] X. Fan, B. Liu, J. Liu, J. Ding, X. Han, Y. Deng, X. Lv, Y. Xie, B. Chen, W. Hu, Battery technologies for grid-level large-scale electrical energy storage. Transactions of Tianjin University, 26 (2020) 92-103.
[3] D. Rastler, Electricity Energy Storage Technology Options. (2010).
[4] T.U. Daim, X. Li, J. Kim, S. Simms, Evaluation of energy storage technologies for integration with renewable electricity: Quantifying expert opinions. Environmental Innovation and Societal Transitions, 3 (2012) 29-49.
[5] C.J. Rydh, Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of power sources, 80 (1999) 21-29.
[6] M. Lopez-Atalaya, G. Codina, J.R. Perez, J.L. Vazquez, A. Aldaz, Optimization studies on a Fe/Cr redox flow battery. Journal of Power Sources, 39 (1992) 147-154.
[7] S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan, P. Ragupathy, Zinc–bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Advances, 4 (2014) 37947-37953.
[8] D.M. Kabtamu, G.-Y. Lin, Y.-C. Chang, H.-Y. Chen, H.-C. Huang, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, The effect of adding Bi3+ on the performance of a newly developed iron–copper redox flow battery. RSC advances, 8 (2018) 8537-8543.
[9] E. Sum, M. Rychcik, M. Skyllas-Kazacos, Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery. J. Power Sources;(Switzerland), 16 (1985).
[10] E. Sum, M. Skyllas-Kazacos, A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power sources, 15 (1985) 179-190.
[11] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. Journal of Power Sources, 16 (1985) 85-95.
[12] M. Guarnieri, P. Mattavelli, G. Petrone, G. Spagnuolo, Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology. IEEE Industrial Electronics Magazine, 10 (2016) 20-31.
[13] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chemical Reviews, 111 (2011) 3577-3613.
[14] C. Yin, S. Guo, H. Fang, J. Liu, Y. Li, H. Tang, Numerical and experimental studies of stack shunt current for vanadium redox flow battery. Applied Energy, 151 (2015) 237-248.
[15] D. Lee, S. Ryu, S.-H. Shin, J.-H. Kim, S.-H. Moon, A model study on effects of vanadium ion diffusion through ion exchange membranes in a non-aqueous redox flow battery. Journal of Renewable and Sustainable Energy, 11 (2019) 034701.
[16] A. Hassan, T. Tzedakis, Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. Journal of Energy Storage, 26 (2019) 100967.
[17] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of materials chemistry a, 3 (2015) 16913-16933.
[18] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochimica Acta, 51 (2005) 395-407.
[19] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 101 (2013) 27-40.
[20] X. Qiu, T.A. Nguyen, J.D. Guggenberger, M.L. Crow, A.C. Elmore, A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids. IEEE Transactions on Smart Grid, 5 (2014) 1592-1601.
[21] X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. International Journal of Energy Research, 43 (2019) 6599-6638.
[22] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 166 (2007) 531-536.
[23] M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control. Journal of Power Sources, 196 (2011) 8822-8827.
[24] 馬振基 , 謝曉峰 , 江仁吉 , 蕭閔謙 , 楊士賢 , 張立學 新型儲能電池 − 全釩液流電池的原理與發展現況. 化學, 70(2012) 237-246, (2012).
[25] G. Oriji, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochimica Acta, 49 (2004) 3091-3095.
[26] B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane Development for Vanadium Redox Flow Batteries. ChemSusChem, 4 (2011) 1388-1406.
[27] Q. Xu, T.S. Zhao, P.K. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries. Applied Energy, 105 (2013) 47-56.
[28] K.H. Kim, B.G. Kim, D.G. Lee, Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB). Composite Structures, 109 (2014) 253-259.
[29] K.J. Kim, Y.-J. Kim, J.-H. Kim, M.-S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics, 131 (2011) 547-553.
[30] L. Cao, M. Skyllas-Kazacos, C. Menictas, J. Noack, A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of Energy Chemistry, 27 (2018) 1269-1291.
[31] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. Journal of Materials Chemistry A, 4 (2016) 11472-11480.
[32] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Ta2O5-nanoparticle-modified graphite felt as a high-performance electrode for a vanadium redox flow battery. ACS Sustainable Chemistry & Engineering, 6 (2018) 3019-3028.
[33] D.M. Kabtamu, A.W. Bayeh, T.-C. Chiang, Y.-C. Chang, G.-Y. Lin, T.H. Wondimu, S.-K. Su, C.-H. Wang, TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Applied Surface Science, 462 (2018) 73-80.
[34] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Hydrogen-treated defect-rich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery. ACS Applied Energy Materials, 2 (2019) 2541-2551.
[35] A.W. Bayeh, G.-Y. Lin, Y.-C. Chang, D.M. Kabtamu, G.-C. Chen, H.-Y. Chen, K.-C. Wang, Y.-M. Wang, T.-C. Chiang, H.-C. Huang, Oxygen-Vacancy-rich cubic CeO2 nanowires as catalysts for vanadium redox flow batteries. ACS Sustainable Chemistry & Engineering, 8 (2020) 16757-16765.
[36] A.W. Bayeh, Y.-Y. Ou, Y.-T. Ou, Y.-C. Chang, H.-Y. Chen, K.-C. Wang, Y.-M. Wang, H.-C. Huang, T.-C. Chiang, D.M. Kabtamu, MoO2–graphene nanocomposite as an electrocatalyst for high-performance vanadium redox flow battery. Journal of Energy Storage, 40 (2021) 102795.
[37] C.-N. Sun, F.M. Delnick, L. Baggetto, G.M. Veith, T.A. Zawodzinski Jr, Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries. Journal of Power Sources, 248 (2014) 560-564.
[38] L. Wei, T. Zhao, Q. Xu, X. Zhou, Z. Zhang, In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Applied Energy, 190 (2017) 1112-1118.
[39] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Letters, 13 (2013) 1330-1335.
[40] K. Li, Y. Jiang, R. Zhang, S. Ren, X. Feng, J. Xue, T. Zhang, Z. Zhang, Z. He, L. Dai, Oxygen vacancy and size controlling endow tin dioxide with remarked electrocatalytic performances towards vanadium redox reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602 (2020) 125073.
[41] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochimica Acta, 37 (1992) 1253-1260.
[42] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments. Electrochimica Acta, 37 (1992) 2459-2465.
[43] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon, 48 (2010) 3079-3090.
[44] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochemistry Communications, 13 (2011) 1379-1382.
[45] D.J. Suárez, Z. González, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery. ChemSusChem, 7 (2014) 914-918.
[46] J. Schneider, E. Bulczak, G.A. El-Nagar, M. Gebhard, P. Kubella, M. Schnucklake, A. Fetyan, I. Derr, C. Roth, Degradation phenomena of bismuth-modified felt electrodes in VRFB studied by electrochemical impedance spectroscopy. Batteries, 5 (2019) 16.
[47] C. Yang, H. Wang, S. Lu, C. Wu, Y. Liu, Q. Tan, D. Liang, Y. Xiang, Titanium nitride as an electrocatalyst for V (II)/V (III) redox couples in all-vanadium redox flow batteries. Electrochimica Acta, 182 (2015) 834-840.
[48] J. Vázquez‐Galván, C. Flox, C. Fàbrega, E. Ventosa, A. Parra, T. Andreu, J.R. Morante, Hydrogen‐Treated Rutile TiO2 Shell in Graphite‐Core Structure as a Negative Electrode for High‐Performance Vanadium Redox Flow Batteries. ChemSusChem, 10 (2017) 2089-2098.
[49] P.C. Ghimire, R. Schweiss, G.G. Scherer, N. Wai, T.M. Lim, A. Bhattarai, T.D. Nguyen, Q. Yan, Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. Journal of Materials Chemistry A, 6 (2018) 6625-6632.
[50] Z. He, M. Li, Y. Li, C. Li, Z. Yi, J. Zhu, L. Dai, W. Meng, H. Zhou, L. Wang, ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery. Electrochimica Acta, 309 (2019) 166-176.
[51] Y. Jiang, X. Feng, G. Cheng, Y. Li, C. Li, Z. He, J. Zhu, W. Meng, H. Zhou, L. Dai, Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries. Electrochimica Acta, 322 (2019) 134754.
[52] L. Wei, T. Zhao, L. Zeng, Y. Zeng, H. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources, 341 (2017) 318-326.
[53] L. Huang, Z. Duan, Y. Song, Q. Li, L. Chen, BiVO4 Microplates with Oxygen Vacancies Decorated with Metallic Cu and Bi Nanoparticles for CO2 Photoreduction. ACS Applied Nano Materials, 4 (2021) 3576-3585.
[54] T. Nakajima, Y. Miseki, H. Tateno, T. Tsuchiya, K. Sayama, Acid-Resistant BiVO4 Photoanodes: Insolubility Control by Solvents and Weak W Diffusion in the Lattice. ACS Applied Materials & Interfaces, 13 (2021) 12079-12090.
[55] J.B. Pan, B.H. Wang, J.B. Wang, H.Z. Ding, W. Zhou, X. Liu, J.R. Zhang, S. Shen, J.K. Guo, L. Chen, Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO4 Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation. Angewandte Chemie, 133 (2021) 1453-1460.
[56] R. Pelberg, Concepts in Radiation and Radiation Safety, in: Cardiac CT Angiography Manual, Springer, 2015, pp. 1-17.
[57] J.C. Vickerman, I.S. Gilmore, Surface Analysis – The Principal Techniques, John Wiley & Sons, Ltd, 2009.
[58] D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation. Advances in colloid and interface science, 81 (1999) 167-249.
[59] Y. Yuan, T.R. Lee, Contact angle and wetting properties, in: Surface science techniques, Springer, 2013, pp. 3-34.
[60] Y. Li, B. Yang, B. Liu, Synthesis of BiVO4 nanoparticles with tunable oxygen vacancy level: The phenomena and mechanism for their enhanced photocatalytic performance. Ceramics International, 47 (2021) 9849-9855.

無法下載圖示 全文公開日期 2024/10/25 (校內網路)
全文公開日期 2024/10/25 (校外網路)
全文公開日期 2024/10/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE