簡易檢索 / 詳目顯示

研究生: 張立翰
Li-Han Chang
論文名稱: 氣泡在液體內的上升運動之數值模擬
Numerical Simulation of the Rising Motion of a Gas Bubble in a Liquid
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 陳國聲
none
孫珍理
Chen-Li Sun
陳明志
Ming-Jyh Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 氣泡上升運動邊界元素法表面張力液體射流
外文關鍵詞: gas bubble, rising motion, boundary element method, surface tension, liquid jet
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣泡在液體內的運動行為普遍的出現在自然界與實際的工程問題中。為了解決諸多工程實際問題,探討氣泡在液體內的上升運動為近幾十年來學者不斷研究的重要問題。

    本研究利用邊界元素法模擬三維軸對稱氣泡在無限液體內的初始上升運動與在上升的過程中所發生的變形行為,並且討論表面張力效應對氣泡上升運動與變形行為的影響。

    由數值模擬的結果可發現,氣泡在浮力的推動下會以兩倍重力加速度的初始加速度作等加速度上升運動,此結果與Walters and Davidson(1963)的理論結果相吻合。因為氣泡下表面的靜水壓力大於氣泡上表面的靜水壓力,此壓力差會導致氣泡下方產生一個方向與重力方向相反的向上液體射流。液體射流會從下方開始推擠氣泡使氣泡發生變形,隨著時間的增加,液體射流會更進一步的推擠氣泡使氣泡下表面產生凹陷,之後氣泡的下表面逐漸往氣泡的上表面接近。最後氣泡的下表面會碰撞到氣泡的上表面,此時液體射流會穿透氣泡的上表面,
    使氣泡發生破裂變形為環形氣泡。另外,當表面張力太大時,氣泡最終不會破裂變形為環形氣泡而是變形為球帽型氣泡。


    The behaviors of gas bubbles in a liquid appear frequently in nature and engineering. In order to solve many engineering problems, the study of the rising motion of a gas bubble in a liquid is of great interest to many researchers.

    In this study we use the boundary element method to simulate the rising motion and deformation of a three-dimensional, axisymmetric gas bubble in an infinite domain of inviscid and incompressible fluid. The effect of surface tension on the rising motion and deformation of the gas bubble will be investigated.

    The results suggest that the initial acceleration of the gas bubble is 2g owing to buoyancy which is consistent with the prediction of Walters and Davidson(1963). Because the hydrostatic pressure at the bottom surface of the gas bubble is higher than that at the top surface, the difference of the hydrostatic pressure induces the formation of a liquid jet which pushes into the gas bubble from below. As time progresses, the liquid jet further penetrates into the gas bubble, which leads to the bottom surface approaching the top surface of the gas bubble. Eventually, the impact of the liquid jet results in the bottom surface piercing through the top surface of the gas bubble then the gas bubble breaks up into a toroidal bubble. If the effect of surface tension is strong enough, the gas bubble forms a spherical-cap bubble without breaking into a toroidal bubble.

    中文摘要 英文摘要 致謝 目錄 符號索引 圖目錄 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究目的 4 1.3 論文架構 5 第二章 理論分析 6 2.1 問題描述 6 2.2 控制方程式 7 2.3 邊界條件 8 2.4 無因次化 10 2.5 能量守恆 11 2.6 Rayleigh-Plesset方程式 14 第三章 數值方法 18 3.1 邊界元素法 18 3.1.1 格林定理與格林函數 19 3.1.2 邊界積分方程式 21 3.1.3 離散邊界 27 3.1.4 離散邊界積分方程式 29 3.1.5 代入邊界條件 33 3.2 時間積分 33 3.3 求解流程 36 第四章 結果與討論 38 4.1 球形氣泡在無限液體內的脈動行為 38 4.2 球形氣泡在無限液體內的上升運動 41 4.3 表面張力效應對球形氣泡上升運動的影響 44 第五章 結論 46 參考文獻 48 圖 50

    [1] Baker, G. R. and Moore, D. W. 1989 The rise and distortion of a two-dimensional gas bubble in an inviscid liquid. Phys. Fluids A 1, 1451-1459.
    [2] Becker, A. A. 1992 The boundary element method in engineering. McGraw-Hill.
    [3] Bessler, W. F. and Littman, H. 1987 Experimental studies of wakes behind circularly capped bubbles. J. Fluid Mech. 185, 137-151.
    [4] Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C. 1984 Boundary element techniques. Springer-Verlag.
    [5] Brennen, C. E. 1995 Cavitation and bubble dynamics. Oxford University Press.
    [6] Bugg, J. D. and Rowe, R. D. 1991 Modelling the initial motion of large cylindrical and spherical bubbles. Intl. J. Numer. Meth. Fluids 13(1), 109-129.
    [7] Chen, L., Garimella, S. V., Reizes, J. A. and Leonardi, E. 1999 The development of a bubble rising in a viscous liquid. J. Fluid Mech. 387, 61-96.
    [8] Christov, C. I. and Volkov, P. K. 1985 Numerical investigation of the steady viscous flow past a stationary deformable bubble. J. Fluid Mech. 158, 341-364.
    [9] Davidson, J. F. and Schuler, B. O. G. 1960 Bubble formation at an orifice in an inviscid liquid. Trans. Inst. Chem. Engrs. 38, 335-342.
    [10] Davies, R. M. and Taylor, F. I. 1950 The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. A 200, 375-390.
    [11] Hirt, C. W. and Nichols, B. D. 1981 Volume of fluid (VOF) method for
    the dynamics of boundaries. J. Comput. Phys. 39, 201-225.
    [12] Lundgren, T. S. and Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479-510.
    [13] Lundgren, T. S. and Mansour, N. N. 1991 Vortex ring bubbles. J. Fluid Mech. 224, 177-196.
    [14] Miksis, M. J., Vanden-Broeck, J.-M. and Keller, J. B. 1982 Rising
    bubbles. J. Fluid Mech. 123, 31-41.
    [15] Plesset, M. S. 1949 The dynamics of cavitation bubbles. J. Applied Mech. 16, 228-231.
    [16] Rayleigh, Lord. 1917 On the pressure developed in a liquid druing the collapse of a spherical void. Philos. Mag. 34, 94-98.
    [17] Ryskin, G. and Leal, L. G. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique. J. Fluid Mech. 148, 1-17.
    [18] Ryskin, G. and Leal, L. G. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 148, 19-35.
    [19] Su, Y. H. 1999 Numerical study of the nonlinear dynamics of the acoustic drops and bubbles. PhD Thesis, MIT.
    [20] Walters, J. K. and Davidson, J. F. 1962 The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble. J. Fluid Mech. 12, 408-417.
    [21] Walters, J. K. and Davidson, J. F. 1962 The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The three-dimensional bubble and the toroidal bubble. J. Fluid Mech. 17, 321-336.
    [22] Wegener, P. P. and Parlange, J. Y. 1973 Spherical-cap bubbles. Ann. Rev. Fluid Mech. 5, 79-100.
    [23] Yang, Y. and Levine, H. 1992 Spherical cap bubbles. J. Fluid Mech. 235, 73-87.

    無法下載圖示 全文公開日期 2011/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE