簡易檢索 / 詳目顯示

研究生: 洪啟睿
Chi-Rui Hung
論文名稱: 表皮生長因子結合抗菌微氣泡進行超音波傷口修復之效益評估
Evaluation of the wound healing enhancements ultrasound-mediated epidermal growth factor loaded lysozyme shelled microbubbles
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 王智弘
Chih-Hung Wang
劉浩澧
Hao-Li Liu
沈哲州
Che-Chou Shen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 超音波溶菌酶微氣泡對比劑傷口修復表皮生長因子穴蝕效應
外文關鍵詞: Epidermal Growth Factor
相關次數: 點閱:257下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年有研究發現超音波可以促進傷口周圍細胞活化加速傷口癒合,本研究以新型抗菌超音波微氣泡對比劑作為藥物釋放載體,在微氣泡表面修飾表皮生長因子(EGF)添加於一般市售敷料並施打超音波所產生的穴蝕效應,加強促進藥物在傷口之真皮層與皮下組織細胞吸收加速傷口癒合。
    本研究以電性吸附法使表皮生長因子(EGF)吸附於溶菌酶微氣泡(LYMBs),透過DLS量測粒徑與電位並進行離體(in vitro)抗菌實驗(n=3)與活體(in vivo) (n=5)動物實驗。抗菌實驗組分別為(1) 控制組(C)、(2) 超音波結合控制組(C+U)、(3) Lysozyme溶液組(L)、(4) 超音波結合Lysozymes溶液組(L+U)、(5) LYMBs組(M)、(6) 超音波結合LYMBs組(M+U)、(7) EGF-LYMBs組(EM)、(8) 超音波結合EGF-LYMBs組(EM+U)。動物實驗組分別為(1) 控制組(C)與超音波結合控制組(C+U)、(2) 單純敷料組(D)與超音波結合單純敷料組(D+U)、(3) LYMBs搭配敷料組(M)與超音波結合LYMBs搭配敷料組(M+U)、(4) EGF溶液搭配敷料組(E)與超音波結合EGF溶液搭配敷料組(E+U)、(5) EGF-LYMBs搭配敷料組(EM)與超音波結合EGF-LYMBs搭配敷料組(EM+U)。
    表面吸附EGF得到的溶菌酶微氣泡,吸附前後其粒徑大小會隨之改變,依序LYMBs、EGF-LYMBs為2.68 ± 0.21 μm、3.78 ± 0.18 μm;表面電位依序為80.33 ± 1.19 mV、40.33 ± 3.62 mV;微氣泡LYMBs對EGF的吸附率為19.40%;利用透析方式搭配超音波觀察藥物釋放,在2小時時釋放44%;抗菌實驗結果中與C+U(18.23%)、L(75.12%)、M(96.56%)相比,3 W/cm2超音波結合溶菌酶微氣泡(M+U)擁有最好的殺菌效率(97.50%)。動物實驗結果中超音波結合EGF-LYMBs組相較於其他組別在傷口修復上的效果是最好的,綜合以上結果3 W/cm2超音波結合修飾表皮生長因子微氣泡能有效加強傷口之修復率。


    In previous studies, ultrasound (US) can induce cell activation around the wound to accelerate wound healing. In this study, a new antibacterial US microbubbles (MBs) as a drug delivery vehicle, loaded with epidermal growth factor (EGF) added to the dressing combines with US was provided to accelerate wound healing.
    The Lysozyme-shelled MBs (LYMBs) absorbed EGF on this cationic carriers. The zeta potential and size distribution of the EGF loaded LYMBs in suspension were measured by DLS. The in vitro, anti-bactericidal experiment for S.aureus and in vivo experiments were performed. The experimental parameters of anti-bactericidal experiment for S.aureus will be divided into eight groups (n=3): (1) the control group(C), (2) US combines control group(C+U), (3) only Lysozyme solution(L), (4) US combines Lysozyme solution(L+U), (5) only LYMBs(M), (6) US combines LYMBs(M+U), (7) only EGF-LYMBs(EM), (8) US combines EGF-LYMBs(EM+U). The in vivo experimental parameters will be randomly divided into five groups (n=5 animals per group): (1) no treatment [the control group(C)] and US alone(C+U), (2) only dressing(D) and US combines dressing(D+U), (3) LYMBs in dressing(M) and US combines LYMBs in dressing(U+M), (4) EGF solution in dressing(E) and US combines EGF solution in dressing(E+U), (5) EGF-LYMBs in dressing(EM) and US combines EGF-LYMBs in dressing(U+EM).
    The cationic LYMBs were absorbed by EGF. The mean diameters of LYMBs and EGF-LYMBs were 2.68 ± 0.21 μm and 3.78 ± 0.18 μm, respectively. The zeta potentials of LYMBs and EGF-LYMBs were 80.33 ± 1.19 mV and 40.33 ± 3.62 mV, respectively. The loading efficiency of EGF on cationic LYMBs was 19.40%. The EGF release kinetics from EGF loaded LYMBs were determined by dynamic dialysis method. After US treatment, the released rate increased 44% at 2 hours. The results of anti-bactericidal experiment for S.aureus showed the best anti-bactericidal effect (97.50%) at a power density of 3 W/cm2 combined with the LYMBs(M+U) higher in than those in groups C+U(18.23%), L(75.12%) and M(96.56%). The results of in vivo experiments showed the best wound healing effect at a power density of 3 W/cm2 combined with the EGF-LYMBs(EM+U) higher in than other groups. The results confirmed that US combined with EGF-LYMBs can enhance wound healing.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 vi 圖目錄 ix 表目錄 xi 第1章 緒論 1 1.1 皮膚構造生理學 1 1.1.1 表皮層 (Epidermis layer) 2 1.1.2 真皮層 (Dermis) 3 1.1.3 皮下組織 (Hypodemis) 3 1.2 傷口癒合機制 3 1.2.1 發炎反應(Inflammation) 4 1.2.2 表皮細胞化(Epithelialization) 5 1.2.3 肉芽組織形成 5 1.2.4 新血管增生 6 1.3 表皮生長因子(Epidermal Growth Factor) 7 1.3.1 表皮生長因子簡介 7 1.3.2 表皮生長因子理化特性與藥理作用 7 1.4 超音波結合微氣泡藥物傳輸機制 9 1.4.1 超音波簡介 9 1.4.2 微氣泡藥物傳輸機制 10 1.4.3 穴蝕效應 12 1.4.4 超音波應用於傷口癒合 14 1.5 超音波微氣泡對比劑簡介與應用 15 1.6 溶菌酶 18 1.6.1 溶菌酶理化特性 18 1.6.2 溶菌酶微氣泡 18 1.7 金黃色葡萄球菌 19 1.8 研究動機 20 第2章 材料與方法 21 2.1 研究架構 21 2.2 藥品與設備 22 2.2.1 藥品 22 2.2.2 設備 22 2.3 表面吸附表皮生長因子之溶菌酶微氣泡製作 24 2.3.1 粒徑分析 25 2.3.2 介面電位 25 2.3.3 濃度分析 26 2.3.4 場發式電子顯微鏡 27 2.4 不同超音波能量穿透海綿敷料於微氣泡之參數評估 28 2.4.1 溶菌酶微氣泡影像存在實驗 29 2.4.2 染劑於去表皮豬皮之穿透深度量測 29 2.5 以酵素免疫分析法做定量分析 31 2.5.1 吸附效率評估 33 2.5.2 於透析袋模擬體外藥物釋放實驗 34 2.6 溶菌酶微氣泡結合超音波之殺菌效率 35 2.6.1 細菌培養 35 2.6.2 細菌檢量線 35 2.6.3 抗菌實驗 36 2.7 超音波結合溶菌酶微氣泡吸附表皮生長因子於小鼠傷口癒合實驗 39 2.8 影像處理流程 41 2.8.1 二值化及閥值運算 42 2.8.2 邊緣偵測 42 2.9 超音波導入儀 43 2.10 統計分析 43 第3章 實驗結果 44 3.1 微氣泡性質 44 3.1.1 粒徑分析 44 3.1.2 電位分析 44 3.1.3 濃度分析 45 3.1.4 場發式電子顯微鏡 46 3.2 不同超音波能量穿透海綿敷料於微氣泡之參數評估 47 3.2.1 溶菌酶微氣泡影像存在實驗 47 3.2.2 染劑於去表皮豬皮之穿透深度量測 49 3.3 以酵素免疫分析法做定量分析 50 3.3.1 吸附效率評估 50 3.3.2 於透析袋模擬體外藥物釋放實驗 52 3.4 溶菌酶微氣泡結合超音波之殺菌效率 53 3.5 超音波結合溶菌酶微氣泡吸附表皮生長因子於小鼠傷口癒合實驗 57 3.5.1 傷口修復狀況 57 3.5.2 組織切片 60 第4章 討論 61 第5章 結論 65 參考文獻 66

    [1] Monteiro-Riviere, N.A., “Comparative anatomy, physiology, and biochemistry of mammalian skin, in D.W. Hobson (ed.)”, Dermal and Ocular Toxicology: Fundamentals and Methods, Boca Raton, FL: CRC Press, pp. 3–71, 1991.
    [2] Monteiro-Riviere, N.A., Bristol, D.G., Manning, T.O., Rogers, R.A., and Riviere, J.E., “Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species”, J. Invest. Dermatol, vol. 95, pp. 582–586, 1990.
    [3] Klaus Peter Wilhelm, Hongbo Zhai, and Howard I. Maibach (2010), Dermatotoxicology (7th ed.), CRC Press.
    [4] Venus M., Waterman J., and McNab I., “Basic physiology of the skin,” Surgery. Vol. 28, No. 10, pp. 469-472, 2010.
    [5] 林銘楷,「人體皮脂對藥物角質層滲透性之研究」,國立成功大學臨床藥學研究所碩士論文, 2004。
    [6] 鄭嘉雯,「含乙基維生素C微乳液之特性」,大同大學生物工程研究所碩士論文,2011。
    [7] Mast B.A., et al., Scarless wound healing in the mammalian fetus. Surg Gynecol Obstet, 1992. 174(5):p. 441-54.
    [8] Principles of Tissue Engineering Second Edition. Edited by Robert P. Lanza, Robert L. and Joseph V. Academic Press, 1997.
    [9] 張文祥,「新型傷口敷料的研發與其體外及體內實驗的評估」,國立中央大學化學工程研究所碩士論文,1996。
    [10] Singer, Adam J.; Clark, Richard A.F Massachusetts Medical Society Volume 341(10) 2 September 1999 pp 738-746
    [11] 阮勝威、蘇慶華,「由靈芝子實驗經萃取後之廢渣所製成之薄膜對於大鼠傷口及組織纖維母細胞之影響」,台北醫學院醫學研究所碩士論文,1996。
    [12] 周俊吉,「膠源蛋白為基材之創傷敷料研究」,國立陽明大學醫學工程研究所碩士學位論文,2001。
    [13] 李嘉豪,「含纖維母細胞生長因子-2之PU水膠複材促進傷口癒合之研究」,南台科技大學化學工程與材料工程研究所碩士論文,2004。
    [14] Clark, R.A.F., K. Ghosh, and M.G. Tonnesen, Tissue Engineering for Cutaneous Wounds. Journal of Investigative Dermatology, 2007. 127(5): p. 1018-1029.
    [15] Cohen, S., The epidermal growth factor (EGF). Cancer, 1983. 51(10): p. 1787-1791.
    [16] Carpenter, G. and S. Cohen, Epidermal growth factor. J Biol Chem, 1990. 265(14): p. 7709-7712.
    [17] Thorne, R.G., S. Hrabětová, and C. Nicholson, Diffusion of Epidermal Growth Factor in Rat Brain Extracellular Space Measured by Integrative Optical Imaging. Journal of Neurophysiology, 2004. 92(6): p. 3471-3481.
    [18] Taylor, J.M., W.M. Mitchell, and S. Cohen, Epidermal Growth Factor: PHYSICAL AND CHEMICAL PROPERTIES. Journal of Biological Chemistry, 1972. 247(18): p. 5928-5934.
    [19] Brand, T.M., et al., The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery medicine, 2011. 12(66): p. 419.
    [20] 李嘉明、李玉華,新超音波醫學1 : 醫用超音波的基礎,合計圖書出版社,2003。
    [21] 陳思嘉,「靶向超音波於血栓溶解之研究」,國立台灣大學電機資訊學院生依電子與資訊學研究所碩士論文,2009。
    [22] 王嘉弘,「高頻超音波驅動電路設計在生醫應用之研究」,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [23] Douglas A. Christensen, Wiley, Ultrasonic Bioinstrumentation, 1988.
    [24] 伍嘉文,「多種模式超音波驅動電路設計於生物醫學應用」,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [25] Kaufman J J, Popp H, Chiabrea A, Pilla AA, The effect of ultrasound on the electrical impedance of biological cells, IEEE engineering in medicine & biology society 10th annual international conference, 1988:2, 6, 753-754.
    [26] Levy D , Kost J, Meshulam Y, Langer R, Effect of ultrasound on transdermal drug delivery to rats and guinea pigs, The Journal of Clinical Investigation, 1989:83, 2, 2074-2078.
    [27] Tezel A, Sens A, Tuchscherer J, Mitragotri S, Synergistic effect of low frequency ultrasound and surfactants on skin permeability, Journal of Pharmaceutical Sciences, 2002:91, 1, 91–100,
    [28] Kokubu T, Matsui n, Fujioka H, Tsundan M, Mizuno k, Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of Cyclooxygenase – 2 mRNA in mouse osteoblasts, Biochemical and Biophysical Research Communications. 1999:256, 2, 284-287.
    [29] Ter Haar, GR, High intensity focused ultrasound for the treatment of tumors, Echocardiography, 2001:18 , 4, 317-322.
    [30] Ter Haar G, Sinnett D Rivens I. High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours, Phys Med Biol. 1989:34, 11, 1743-1750.
    [31] Chaussy C and Thuroff S, Results and side effects of high-intensity focused ultrasound in localized prostate cancer, J Endourol. 2001:15,.4, 437-440.
    [32] 盧聖介,「包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用」,國立清華大學生醫工程與環境科學系碩士論文,2008。
    [33] Lauterborn W., Kurz T., Geisler R., Schanz D., amd Lindau O., ”Acoustic cavitation, bubble dynamics and sonoluminescence.” Ultrasonics sonochemistry, vol. 14, pp. 484-91, 2007.
    [34] 王鴻偉,「使用三倍頻發射相位法對比劑諧波影像」,國立台灣科技大學電機工程系碩士論文,2008。
    [35] Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH, Advances in Ultrasound Biomicroscopy. Ultrasound Med. Biol. 2000:26, 1, 1-27.
    [36] Christensen DA, Ultrasonic Bioinstrumentation. New York: Wiley, 1998.
    [37] 謝依峻,「組織背景抑制於諧波對比劑偵測」,國立台灣科技大學電機工程系碩士論文,2008。
    [38] Miller AJ, Scanning Acoustic Microscopy in Eletronics Research IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, 1985:32, 2, 320-324.
    [39] Geoff R. Lockwood DH. Turnbull DA. Christopher Foster , A 40-100 MHz B-scan Ultrasound backscatter skin imaging. Ultrasound in Med.&Biol. 1995:21, 1, 79-88.
    [40] Passmann C. Ermert H. Adaptive 150MHz Ultrasound Imaging of the Skin and the Eye using an Optimal combination of Shor Pulse Mode and Pulse Compression Mode. IEEE Ultrasonics Symposium. 1995:186,173-6.
    [41] Knspik DA. Starkoski B. Pavlin CJ. Foster FS. A 100-200 MHz Ultrasound Biomicroscope. IEEE. Ultras. Ferroelectrics, and Frequency Control, 2000:47, 6, 1540-9.
    [42] Charles J. Pavlin. F. Stuart Foster, Ultrasound Biomicroscothe Eye Springer-Verlag Press. 1995.
    [43] 何祚明,「高頻超音波影像系統」,國立台灣大學電機工程學研究所碩士論文,2002。
    [44] Chen WS. Lu X. Liu Y. Zhong P. The effect of surface agitation on ultrasound-mediated gene transfer in vitro. J Acoust Soc Am. 2004:116, 4, 2440-50.
    [45] Francis CW. Blinc A. Lee S. Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995:21, 3, 419-24.
    [46] Everbach EC. Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol, 2000:26. 7, 1153-60.
    [47] Li P. Cao LQ. Dou CY. Armstrong WF. Miller D. Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol. 2003:29, 9, 1341–1349.
    [48] Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug design, development and therapy 2013: 375.
    [49] Yang F. Li Y. Chen Z. Zhang Y. Wu J. Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging, Biomaterials. 2009:30, 23-24, 3882–3890.
    [50] Bekeredjian R, Grayburn PA Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J. Am. Coll. Cardiol. , 2005:45, 3, 329–335.
    [51] Lanza, GM. Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol. 2003:28, 12, 625-53.
    [52] Ellegala DB. Leong-Poi H. Carpenter JE. Klibanov AL. Kaul S. Shaffrey ME. Lindner JR. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 2003:108, 336-341.
    [53] Petchsangsai, M., et al., The Combination of Microneedles with Electroporation and Sonophoresis to Enhance Hydrophilic Macromolecule Skin Penetration. Biologica l and Pharmaceutical Bulletin, 2014. 37(8): p. 1373-1382.
    [54] Demir, H., et al., Comparison of the effects of laser and ultrasound treatments on experimental wound healing in rats. J Rehabil Res Dev, 2004. 41(5): p. 721-8.
    [55] Young, S.R. and M. Dyson, Special Issue: Bioeffects Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics, 1990. 28(3): p. 175- 180.
    [56] Doan, N., et al., In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. Journal of Oral and Maxillofacial Surgery, 1999. 57(4): p. 409-419.
    [57] Byl, N.N., et al., Incisional Wound Healing: A Controlled Study of Low and High Dose Ultrasound. Journal of Orthopaedic & Sports Physical Therapy, 1993. 18(5): p. 619-628.
    [58] Kang S. T., Yeh C. K., “Ultrasound Microbubble Contrast Agents for Diagnostic and Therapeutic Applications: Current Status and Future Design,” Chang Gung Medical Journal, Vol. 35, No. 2, pp. 125-139 , 2012.
    [59] Frinking P. J., Bouakaz A., Kirkhorn J., Ten Cate F. J., and de Jong N., “Ultraound contrast imaging: current and new potential methods,” Ultrasound Med Biol, vol. 26, pp. 965-75, 2000.
    [60] Tinkov S., Bekeredjian R., and Winter G. et al., “Microbubbles as Ultrasound Triggered Drug Carriers,” Journal of Pharmaceutical Sciences, Vol. 98, No. 6, pp. 1935-1961, 2009.
    [61] Lindner J. R., “Microbubbles in medical imaging: current applications and future directions,” Nature Reviews Drug Discovery, Vol. 3, No. 6, pp. 527-533, 2004.
    [62] N. McDannold, N. Vykhodtseva, and K. Hynynen, "Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study," Ultrasound Med Biol, vol. 33, pp. 584-90, Apr 2007.
    [63] Edward L., “The role of contrast-enhanced ultrasound in the characterization of focal liver lesions,” European Radiology , Vol. 11, No. 3, pp. E27-E34, 2001.
    [64] P. Jollès, J. Jollès. "What's new in lysozyme research?."Molecular and cellular biochemistry , vol. 63.2, pp. 165-189, 1984.
    [65] M. O. Ogundele, "A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation." Mediators of inflammation, vol. 7.5, pp. 363-365, 1998.
    [66] P. L. Huang, Y. Sun, H. C. Chen, H. F. Kung, P. L. Huang, "Proteolytic fragments of anti-HIV and anti-tumor proteins MAP30 and GAP31 are biologically active." Biochemical and biophysical research communications , vol. 262.3, pp. 615-623, 1999.
    [67] A. Oevermann, M. Engels, U. Thomas, "The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification." Antiviral research, vol. 59.1, pp. 23-33, 2003.
    [68] G. P. Gorbenko, V. M. Ioffe, P. K. Kinnunen, "Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association." Biophysical journal, vol. 93.1, pp. 140-153, 2007.
    [69] J. L. Parrot, G. Nicot, "Antihistaminic action of lysozyme."Nature, vol. 197, pp. 496, 1963.
    [70] G. Sava, V. Ceschia, S. Pacor, G. Zabucchi, "Observations on the antimetastatic action of lysozyme in mice bearing Lewis lung carcinoma." Anticancer research, vol. 11.3, pp. 1109-1113, 1990.
    [71] H. R. Ibrahim, T. Aoki, A. Pellegrini, "Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules." Current pharmaceutical design, vol. 8.9, pp. 671-693, 2002.
    [72] Charernsriwilaiwat, N., et al., Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. International Journal of Pharmaceutics, 2012. 427(2): p. 379-384.
    [73] F. Cavalieri, M. Ashokkumar, F. Grieser, F. Caruso, "Ultrasonic synthesis of stable, functional lysozyme microbubbles." Langmuir , vol. 24.18, pp. 10078-10083, 2008.
    [74] M. Zhou, F. Cavalieri, M. Ashokkumar, "Modification of the size distribution of lysozyme microbubbles using a post-sonication technique." Instrumentation Science & Technology, vol. 40.1, pp. 51-60, 2012.
    [75] Sause, W.E., et al., Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends in Pharmacological Sciences. 37(3): p. 231-241.
    [76] Krishna, S. and L.S. Miller, Host–pathogen interactions between the skin and Staphylococcus aureus. Current Opinion in Microbiology, 2012. 15(1): p. 28-35.
    [77] Linda, F.M., et al., Staphylococcus aureus–associated Skin and Soft Tissue Infections in Ambulatory Care. Emerging Infectious Disease journal, 2006. 12(11): p. 1715.
    [78] Altemeier, W.A., BActeriology of traumatic wounds. Journal of the American Medical Association, 1944. 124(7): p. 413-417.
    [79] Kobayashi, S.D., N. Malachowa, and F.R. DeLeo, Pathogenesis of Staphylococcus aureus Abscesses. The American Journal of Pathology. 185(6): p. 1518-1527.
    [80] 王子瑜、曹恒光,漫談布朗運動,物理雙月刊,2005。
    [81] Nanoparticle Analyzer SZ-100S儀器使用操作手冊。
    [82] 楊粉榮、文洪杰、鍾勤,幾種粒徑量測定方法比較 Physics Examination and Testing,2005。
    [83] Prospect S-Sharp儀器使用操作手冊。
    [84] 陳守信,「即時影像處理於自走車避障之設計與實現」,逢甲大學自動控制工程學系碩士論文,2007。
    [85] Kim J., Jang J. H., and Lee J. H. et al., “Enhanced Topical Delivery of SmallHydrophilic or Lipophilic Active Agents and Epidermal Growth Factor by Fractional Radiofrequency Microporation,” Pharmaceutical Research, Vol. 29, No. 7, pp. 2017-2029, 2012.
    [86] Bai, M.Y., et al., The effect of active ingredient-containing chitosan/polycaprolactone nonwoven mat on wound healing: in vitro and in vivo studies. J Biomed Mater Res A, 2014. 102(7): p. 2324-33.

    QR CODE