簡易檢索 / 詳目顯示

研究生: 劉威辰
Wei-Chen Liu
論文名稱: 脈衝反相技術應用於高頻超音波影像之低流速血流都卜勒偵測
Pulse Inversion on Doppler Detection in High-Frequency Ultrasound Image of Low-velocity Blood Flow
指導教授: 沈哲州
Che-Chou Shen
口試委員: 王士豪
Shyh-Hau Wang
鄭耿璽
Gen-Cy Jeng
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 高頻超音波都卜勒血流估計掃掠式掃描組織頻譜加寬效應組織抑制非線性信號微氣泡對比劑脈衝反相技術
外文關鍵詞: High-frequency ultrasound, Doppler estimation of blood flow, Swept-scan mode, Tissue spectral broadening effect, Clutter suppression, Non-linear signal, Micro-bubble contrast agent, Pulse inversion
相關次數: 點閱:235下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高頻超音波都卜勒血流估計中,一般以掃掠式掃描法(swept-scan)來擷取流速資訊,而超音波探頭的橫向移動會造成時變的組織反射信號,造成慢時域(slow time)方向上產生組織訊號頻譜加寬(spectral broadening)的效應,所以當為了將組織訊號濾除而使用雜波高通濾波器(wall filter)的時候,必頇把雜波濾波器的截止頻率提高而造成低流速的血流信號連帶被濾除,導致所偵測出來的血流資訊也會產生錯估之結果。
    為了抑制因掃掠式掃描法所產生的組織頻譜加寬效應,本研究採用微氣泡對比劑非線性成像方法來達到組織抑制效果。基頻脈衝反相都卜勒(Fundamental pulse inversion Doppler, FPID)法可將組織線性信號與微氣泡特殊非線性信號在都卜勒頻譜上分離在不同的頻段以減少組織干擾,我們以一低通濾波器將位於頻譜上DC附近之非線性信號取出,然而流速估計的範圍會因低通濾波器被限制在±PRF/4之間,但此時wall filter設計便能以保留較低流速的血流信號為目標做調整,進而提升都卜勒系統偵測血流之能力。結果顯示,在不同馬達移動速度的情況下,其所能估計出之血流資訊量相差不多,當馬達移動速度為4mm/s、8mm/s、16mm/s,血流流速為3mm/s時,其CPD分別為
    II
    0.63、0.65與0.58,表示其並不受因馬達橫向移動所產生的頻譜加寬效應所影響。而在低血流流速3mm/s時,當馬達移動速度為16mm/s,在有使用FPID情形下比沒使用FPID的情形,其SCR有7.71dB(P < 0.001)的提升,而CPD則有20.2 %(P < 0.001)的提升。


    Swept-scan mode is often used in High-frequency ultrasound Doppler estimation for the blood flow information. But it will cause the tissue spectral broadening effect in the Doppler spectrum when using Swept-scan. In order to remove the tissue signal, the cut-off frequency of wall filter must be increased. The increase of cut-off frequency leads to the loss of low-velocity blood signal and an incorrect estimate result of blood flow detection.
    To alleviate the effect of wall filtering on low-velocity blood signal, the suppression of tissue Doppler signal with micro-bubble contrast agent and non-linear imaging can be helpful. With the method of fundamental pulse-inversion Doppler (FPID), the non-linear bubble signal can be isolated from the linear tissue signal in the Doppler spectrum to reduce the clutter interference. With the FPID method, we need a low pass filter to get the non-linear signal out from DC of Doppler spectrum. So that, the range of blood velocity estimation would be restricted in ±PRF/4. But the cut-off frequency of wall filter can be lower. The results show that the FPID helps to retain the low-velocity blood flow signal in color Doppler imaging and thus improves the efficacy of blood flow detection. With different lateral velocity of scanning motor, the CPD result of FPID are 0.63(Vmotor = 4mm/s), 0.65(Vmotor = 8mm/s) and 0.58(Vmotor = 16mm/s). It shows that FPID will not be affected by the tissue spectral broadening effect. The results also show that, with FPID method, the SCR increases
    IV
    by 7.71dB (P < 0.001) and the CPD increases by 20.2 % (P < 0.001) in the case of 3mm/s of blood flow velocity and 16mm/s lateral velocity of the scanning motor.

    目錄 中文摘要------------------------------------------------------------ I Abstract------------------------------------------------------------- III 致謝------------------------------------------------------------------ V 目錄------------------------------------------------------------------ VII 圖目錄--------------------------------------------------------------- X 表目錄--------------------------------------------------------------- XV 第一章 緒論--------------------------------------------------------- 1 1-1 高頻超音波影像系統------------------------------------ 1 1-2 高頻血流成像方法與應用------------------------------ 3 1-2.1 都卜勒血流成像----------------------------------- 3 1-2.2 掃掠式掃描之技術與影響----------------------- 5 1-2.3 彩色都卜勒信號處理----------------------------- 10 1-3 超音波非線性成像技術--------------------------------- 13 1-3.1 組織之超音波非線性響應----------------------- 13 1-3.2 對比劑氣泡產生之非線性信號----------------- 14 1-4 研究動機與目標------------------------------------------ 18 第二章 血流偵測之組織抑制原理---------------------------- 19 2-1 雜波高通濾波器----------------------------------------- 19 VIII 2-2 脈衝反相技術原理-------------------------------------- 21 2-3 基頻脈衝反相信號與都卜勒頻譜-------------------- 23 第三章 研究方法 ------------------------------------------------- 28 3-1 掃掠式血流成像系統------------------------------------ 28 3-2 基頻影像成像 --------------------------------------------- 31 3-3 都卜勒影像之信號處理--------------------------------- 35 第四章 研究結果------------------------------------------------- 37 4-1 血流成像系統之驗證 ----------------------------------- 37 4-1.1 量化數據-------------------------------------------- 37 4-1.1.1 Signal to clutter ratio (SCR)--------------- 37 4-1.1.2 Color pixel density (CPD)------------------ 38 4-1.2 高通濾波截止頻率對流速估計之影響-------- 38 4-1.3 馬達移動速度造成之組織頻譜加寬現象----- 42 4-1.3.1 尼龍線仿體實驗---------------------------- 42 4-1.3.2 碳粉仿體實驗 ------------------------------- 43 4-2 脈衝反相之基頻都卜勒成像--------------------------- 45 4-2.1 PRF對流速估計之影響-------------------------- 45 4-2.2 馬達移動速度對流速估計之影響--------------50 4-2.3 不同流速之血流偵測效果----------------------- 56 IX 4-2.3.1 Axial flow velocity = 3mm/s--------------- 56 4-2.3.2 Axial flow velocity = 5mm/s--------------- 60 4-2.3.3 Axial flow velocity = 7mm/s--------------- 64 4-2.3.4 Axial flow velocity = 9mm/s--------------- 69 4-3 脈衝反相之基頻功率都卜勒成像-------------------- 74 第五章 討論、結論與未來工作------------------------------- 79 5-1 討論-------------------------------------------------------- 79 5-2 結論-------------------------------------------------------- 85 5-3 未來工作-------------------------------------------------- 86 參考文獻------------------------------------------------------------ 87

    [1] Lockwood, G.R., Ryan, L.K., Hunt, J.W., Foster, F.S., “High frequency ultrasound vascular tissue characterization”, Ultrasonics Symposium Proceedings 3, pp. 1409-1412, 1990.
    [2] Harland, C.C., Bamber, J.C., Gusterson, B.A., Mortimer, P.S., “High frequency, high resolution B-scan ultrasound in the assessment of skin tumours”, British Journal of Dermatology 128 (5), pp. 525-532, 1993.
    [3] Szymańska, E., Nowicki, A., Mlosek, K., Litniewski, J.,
    Lewandowski, M., Secomski, W., Tymkiewicz, R., “Skin imaging with high frequency ultrasound - Preliminary results”, European Journal of Ultrasound 12 (1), pp. 9-16, 2000.
    [4] Passmann, C., Ermert, H., “Adaptive 150 MHz ultrasound imaging of the skin and the eye using an optimal combination of short pulse mode and pulse compression mode”, Proceedings of the IEEE Ultrasonics Symposium 2, pp. 1291-1294, 1995.
    [5] Vogt, M., Ermert, H., “Application of high frequency broadband ultrasound for high resolution blood flow measurement”, Proceedings of the IEEE Ultrasonics Symposium 2, pp. 1243-1246, 1997.
    [6] Kruse, D.E., Silverman, R.H., Fornaris, R.J., Jackson Coleman, D.,
    Ferrara, K.W., “A swept-scanning mode for estimation of blood velocity in the microvasculature”, IEEE Transactions on
    Ultrasonics, Ferroelectrics, and Frequency Control 45 (6), pp.
    88
    1437-1440, 1998.
    [7] Kruse, D.E., Ferrara, K.W., “A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 49 (10), pp. 1384-1399, 2002. [8] 李承翰,“高頻超音波血流成像”,國立臺灣大學,碩士論文,民 國94 年。
    [9] Newhouse, V.L., Reid, J.M., “Invariance of Doppler bandwidth with flow axis displacement”, Ultrasonics Symposium Proceedings 3 , pp. 1533-1536, 1990.
    [10] Rajaonah, Jean-Claude, Dousse, Bruno, Meister, Jean-Jacques, “Compensation of the bias caused by the wall filter on the mean Doppler frequency”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 41 (6), pp. 812-819, 1994.
    [11] Needles, A., Goertz, D.E., Cheung, A.M., Foster, F.S., “Interframe Clutter Filtering for High Frequency Flow Imaging”, Ultrasound in Medicine and Biology 33 (4), pp. 591-600, 2007. [12] 吳信憲,“非線性組織抑制於低流速血流之都卜勒偵測”,國立 臺灣科技大學,碩士論文,民國100年。 [13] 陳彥甫,“超音波小動物影像之血流計算及應用”,國立臺灣大 學,碩士論文,民國92年。
    [14] Cherin, E., Poulsen, J.K., Van der Steen, A.F.W., Foster, F.S.,
    89
    “Comparison of nonlinear and linear imaging techniques at high frequency”, Proceedings of the IEEE Ultrasonics Symposium 2, pp. 1639-1644, 2000. [15] F. Tranquart, N. Grenier, V. Eder, L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging”, Ultrasound in Medicine and Biology, Volume 25, Issue 6 , Pages 889-894, July 1999.
    [16] De Jong, N., “Improvements in ultrasound contrast agents”, IEEE Engineering in Medicine and Biology Magazine 15 (6), pp. 72-82, 1996. [17] Nonlinear Properties of USphereTM, USphereTM Prime (TRUST Bio-sonics, Inc, Hsinchu, Taiwan) [18] Bruce, M., Averkiou, M., Tiemann, K., Lohmaier, S., Powers, J., Beach, K., “Vascular flow and perfusion imaging with ultrasound contrast agents”, Ultrasound in Medicine and Biology 30 (6), pp. 735-743, 2004.
    [19] Simpson, D.H., Chin, C.T., Burns, P.N., “Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents”, IEEE Transactions on Ultrasonics, Ferroelectrics , and Frequency Control 46 (2), pp. 372-382, 1999. [20] Che-Chou Shen, Pai-Chi Li, “Pulse-Inversion-Based Fundamental Imaging for Contrast Detection”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 9, september 2003
    [21] Li, C.-H., Liao, A.-H., Ho, J.-A., Li, P.-C., “Ultrasonic pulse-inversion fundamental imaging with liposome
    90
    microbubbles at 25-50 MHz”, Proceedings - IEEE Ultrasonics Symposium 1, art. no. 1602929, pp. 621-624, 2005. [22] Kang, S.-T., Yeh, C.-K., “A maleimide-based in-vitro model for ultrasound targeted imaging”, Ultrasonics Sonochemistry 18 (1), pp. 327-333, 2011. [23] Yoo, Y.M., Managuli, R., Kim, Y., “Adaptive clutter rejection for ultrasound color Doppler imaging”, Progress in Biomedical Optics and Imaging - Proceedings of SPIE 5750, art. no. 15, pp. 139-147, 2005. [24] Pinter, S.Z., Lacefield, J.C., “Understanding quantification of microvascularity with high-frequency power Doppler ultrasound”, Progress in Biomedical Optics and Imaging – Proceedings of SPIE 7265, art. no. 72650U, 2009.

    QR CODE