簡易檢索 / 詳目顯示

研究生: 黃瑞逸
Rui-yi Huang
論文名稱: 以影像視覺為基礎的2D氣壓手臂系統之追蹤控制
Tracking Control of A Vision Based 2D Pneumatic Arm
指導教授: 王英才
Ying-Tsai Wang
口試委員: 姜嘉瑞
Chia-Jui Chiang
江茂雄
Mao-Hsiung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 氣壓手臂影像視覺座標轉換軌跡追蹤自組織滑動模糊控制器
外文關鍵詞: pneumatic arm, robot vision, eye in hand
相關次數: 點閱:187下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文結合2D氣壓手臂與影像視覺技術,經由手臂末端的CCD Camera,進行目標物的軌跡追蹤之控制。利用撓性氣壓缸與CCD所組成的氣壓手臂作為本實驗之受控系統,透過CCD擷取目標物的影像資訊,經由影像處理和機器人學的座標轉換,計算二維影像中的目標位置,再藉由Encoder回授系統之控制器設計,導引氣壓手臂進行平面影像的軌跡追蹤控制。本文將探討自組織滑動模糊控制器對於影像視覺之2D氣壓手臂系統,在平面影像的定位以及不同移動速度的軌跡,氣壓手臂的控制性能與追蹤效果。


This thesis is mainly to combine 2D pneumatic arm and a CCD, which is stored in the edge of the arm. This system is applied for tracking control of the object. The arm is setup by pneumatic muscles. It can capture the 2D location of an object via the image processing and coordinate transformation. Then, the self-organizing sliding mode fuzzy controller is designed for the encoder feedback control and drive the pneumatic arm to perform trajectory tracking. From experiments, it tests and verifies the self-organizing sliding mode fuzzy controller for the vision based 2D pneumatic arm, through point-to-point and various speed tracking experiments, in order to evaluate the control performance.

中文摘要I AbstractII 致謝III 目錄IV 圖表索引VII 第一章緒論1 1.1.研究動機與目的1 1.2.文獻回顧4 1.3.論文大綱7 第二章實驗系統架構9 2.1.系統架構9 2.2.實驗設備10 2.2.1.氣壓系統11 2.2.2.影像視覺系統26 2.3.系統工作流程31 第三章影像視覺系統32 3.1.影像視覺系統架構32 3.2.應用軟體工具33 3.2.1.Microsoft Visual C++.Net33 3.2.2.Matrox Image Library(MIL)36 3.3.影像視覺處理39 3.3.1.影像校正作業40 3.3.2.影像辨識系統46 3.3.3.影像座標轉換48 第四章控制理論52 4.1.系統控制架構52 4.2.座標轉換53 4.2.1.順向運動學(Forward Kinematics)54 4.2.2.逆向運動學(Inverse Kinematics)57 4.2.3.工作範圍(Work Space)59 4.3.自組織滑動模糊控制器60 4.3.1.滑動模式控制(Sliding Mode Control)62 4.3.2.模糊控制理論(Fuzzy Control Theory)65 4.3.2.1.模糊化(Fuzzification)66 4.3.2.2.模糊知識庫(Fuzzy Knowledge Base)68 4.3.2.3.模糊推論(Fuzzy Inference)69 4.3.2.4.解模糊化(Defuzzification)70 4.3.3.自組織學習機構(Self-Organizing Learning Mechanism)71 第五章實驗結果與分析77 5.1.實驗規劃77 5.2.實驗參數設定78 5.3.實驗結果與分析80 5.3.1.點對點定位控制(Point to Point Control)81 5.3.1.1.斜線方向的點對點定位控制81 5.3.1.2.垂直方向的點對點定位控制85 5.3.2.連續軌跡追蹤控制(Continuous Path Control)88 5.3.2.1.v=8 mm/s 追蹤控制88 5.3.2.2.v=16 mm/s 追蹤控制92 5.3.3.實驗之綜合討論95 第六章結論98 參考文獻100 作者簡介104

[1]巫憲欣, “以系統晶片發展具機器視覺之機械手臂運動控制”, 國立台灣科技大學機械工程系碩士學位論文, 2006.
[2]S. J. Huang and S. S. Wu, “Vision-based robotic motion control for non-autonomous environment”, Journal of Intelligent and Robotic Systems: Theory and Applications, pp.733-754, 2009.
[3]張進億, “基於影像伺服之移動物體追蹤與夾取”, 國立台灣科技大學機械工程系碩士學位論文, 2009.
[4]G. Carducci, M. Foglia, A. Gentile, N. I. Giannoccaro and A. Messina, “Pneumatic robotic arm controlled by on-off valves for automatic harvesting based on vision localization,” IEEE International Conference on Industrial Technology, V.2, pp.1017-1022, 2004.
[5]B. Tondu, S. Ippolito, J. Guiochet and A. Daidie, “A seven-degree-of- freedom robot-arm driven by pneumatic artificial muscles for humanoid robots,” The International Journal of Robotics Research, V.24, N.4, pp.257-274, 2005.
[6]K. Yamamoto, M. Ishii, H. Noborisaka and K. Hyodo, “Stand alone wearable power assisting suit - sensing and control systems,” IEEE Proceeding of International Workshop on Robot and Human Interactive Communication, N.20-22, pp.661-666, 2004.
[7]Y. Kung, K. Tseng, C. Chen, Hau-Zen Sze and An-Peng Wang, “FPGA-implementation of inverse kinematics and servo controller for robot manipulator,” IEEE International Conference on Robotics and Biomimetics, N.17-20, pp. 1163-1168, 2006.
[8]L. W. Tsai, “Robot Analysis - The Mechanics of Serial and Parallel Manipulators,” John Wiley & Sons, Inc., 1999.
[9]Y. Shirai and H. Inoue, “Guiding a robot by visual feedback in assembling tasks,” Pattern Recogn., Vol.5, pp.99-108, 1973.
[10]J. Hill and W.T. Park, “Real Time Control of a Robot with a Mobile Camera,” Proc. Of the 9th Int. Symp. on Ind. Robots, pp.233-246, 1979.
[11]P. I. Corke and S. A. Hutchinson, “Real-time vision tracking and control”, IEEE International Conference on Robotics and Automation, Vol.1, pp. 622-629, 2000.
[12]J. Ren, J. Orwell, G. A. Jones and M. Xu, “Tracking the soccer ball using multiple fixed cameras” , Computer Vision and Image understanding, pp. 633-642, 2009.
[13]W. C. Chung and A. S. Morse, “Exponentially Stable Positioning of a Rigid Robot Using Stereo Vision,” in Proc of the 1999 IEEE International Conference on Robotics and Automation, Vol.601, pp. 605-610, 1999.
[14]羅建桓, “以影像視覺為基礎之3D 氣壓手臂控制系統”, 國立台灣科技大學機械工程系碩士學位論文, 2008.
[15]劉昭毅, “以平行和非平行立體影像為基礎的3D氣壓手臂”, 國立台灣科技大學機械工程系碩士學位論文, 2009.
[16]J. J. Shearer, “Continuous Control of Motion with Compressed Air,” Scd Thesis, Massachusetts Institute of Technology, 1954.
[17]H. F. Schulte, “The Characteristics of the McKibben Artificial Pneumatic Muscle,” The Proceedings of the Application of External Power in Prostherics and Orthotics Conference, Appendix H. Publ. 874, National Academy of Sciences, Washington, DC, pp. 94-115, 1961.
[18]K. Balasubramanian and K.S. Rattan, “Trajectory Tracking Control of a Pneumatic Muscle System Using Fuzzy Logic,” IEEE, NAFIPS, pp.472-477, 2005.
[19]J.H. Lilly and L. Yang, “Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration,” IEEE Trans. on Cont. Sys. Tech., Vol.13, No.4, pp.550-558, JULY 2005.
[20]M.K. Chang, P.L. Yen and T.H. Yuan, “Angle Control of a one-Dimension Pneumatic Muscle Arm using Self-Organizing Fuzzy Control,” IEEE, International Conference on Systems, Man, and Cybernetics, pp.3834-3838, 2006.
[21]L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965.
[22]E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant”, Proceedings of the Institution of Electrical Engineers, Vol.121, No.12, pp. 1585-1588, 1974.
[23]T. J. Procyk and E. H. Mamdani, “A Linguistic Self-Organizing Process Controller,” Automatica, Vol. 15, pp. 15-30, 1979.
[24]S. Shao, “Fuzzy Self-Organizing Controller and its Application for Dynamic Processes,” Fuzzy Sets & Systems, Vol.26, No.2, pp. 151-64, 1988.
[25]B. S. Zhang and J. M. Edmunds, “Self-Organizing Fuzzy Logic Controller,” IEE Proceedings-D, Control Theory & Applications, Vol.139, No.5, pp.460- 464, 1992.
[26]S. W. Kim and J. J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets & Systems, Vol.71, No.3, pp. 359-67, 1995.
[27]J. C. Lo and Y. H. Kuo, “Decoupling Fuzzy Sliding-Mode Control,” IEEE Transactions on Fuzzy System, Vol.6, No.3, 1998.
[28]R. J. Wai, C. M. Lin and C. F. Hsu, “Self-organizing fuzzy control for motor-toggle servomechanism via sliding-mode technique”, Fuzzy Sets and Systems, Vol.131, pp.235-249, 2002.
[29]“Matrox Image Library Version7.0 User Guide”, Matrox Electronic System, 2001.
[30]R. M. Murray, Z. Li and S. S. Sastry, “A Mathematical Introduction to Robotic Manipulation”, pp. 43-53.
[31]E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, Int. Journal of Man-Machine Studies, Vol.7, No.1, pp. 1-13, 1975.

QR CODE