簡易檢索 / 詳目顯示

研究生: 劉正章
Cheng-Chang Liu
論文名稱: 304不銹鋼螺栓於沸騰氯化鎂水溶液中應力腐蝕破裂之研究
Stress Corrosion Cracking of 304 SS Boltin Boiling MgCl2 Solution
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 蔡顯榮
Hsien-Lung Tsai
張祐語
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 螺栓殘留應力應變誘發麻田散體相變化應力腐蝕破裂
外文關鍵詞: bolt, residual stress, strain induced martensite phase transformation, stress corrosion cracking
相關次數: 點閱:325下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對冷鍛之304不銹鋼螺栓,以不同熱處理條件(退火、應力消除)與不同之鎖緊程度(0 N-m、30 N-m、60 N-m、80 N-m)為實驗條件,將試片浸泡於45%沸騰氯化鎂水溶液中進行腐蝕試驗。試驗後之試片,以掃描式電子顯微鏡與光學顯微鏡觀察破斷形貌及裂紋分布,且利用恆電位儀量測電化學反應,以探討不銹鋼螺栓頭部腐蝕開裂之原因。
試驗結果顯示,由於不銹鋼螺栓經冷鍛加工後,帽頭之表面形貌較粗糙,且原沃斯田體因受劇烈之加工應變,使組織轉變為抗蝕性較差之麻田散體,成為腐蝕開裂之起始點。然而裂紋擴展之形貌及方向,受組織不同而有所變化,易由滑移線與麻田散體組織處發展,形成穿晶與沿晶破壞之形貌。經應力消除熱處理後之螺栓,由於加工變形所造成之應力場,但於長時間熱能幫助下,得以重新調適而降低組織中之殘留應力,減緩腐蝕開裂之時間;若施以退火熱處理,因晶粒重新成長,已不具加工造成之殘留應力,且表面受厚實之氧化皮膜所保護,故無應力腐蝕開裂之現象。然當螺栓受較大之鎖緊扭力時,使得帽頭區承受微小壓縮應變,有效阻礙裂紋生成且抑制其擴展之速度。
综合實驗結果顯示,304不銹鋼螺栓因受嚴重加工變形,使得殘留應力存在於組織中,當處在含氯之環境下,發生穿晶與沿晶之破壞形貌且裂紋呈樹枝狀分布,此與眾多腐蝕行為中之應力腐蝕開裂之現象相符。


The effects of torques and heat treatments on the stress corrosion cracking behavior of 304SS bolt in boiling of 45% Magnesium chloride solution were investigated. SEM/EDS and potentiostate were employed to investigate the fracture features and the relationship between potential-time and potential-corrosive current under different heat treatment of bolt head, respectively.
The results showed that cracks initiated and propagated at the interface between austenite with slip lines and poor corrosion-resistance martensite zone transforming from austenite after severe cold working in the top surface of bolt head, forming both trans-granular and inter-granular fractographic. The growth of cracks was affected by the microstructures of the bolt head, the condition of heat treatments, and the tightened force. For the stress released bolts, the decrease of residual stress and readjustment of stresses fields in the bolt head after thermal treatment prolonged the nucleation time of a crack. With the recrystallization and grain growth by the annealing treatment of the bolt head, no crack could be observed under the experimental conditions in this study. For the non-heat treatments bolt with tightened force, tensile stresses at the interface between austenite and martensite zone in the top surface of bolt head transformed to compressive stresses and prohibited the forming of a crack.
By the revealed evidences, it can be concluded that the severe cold working caused the formation of complicated tensile stress field in the bolt head, and bolts were ruptured by chloride stress corrosion cracking.

第一章 前言……………………………………………………………..1 第二章 文獻回顧及破損分析………………………………………..…4 2.1 不銹鋼螺栓………………………………………………...4 2.1.1 不銹鋼……………………………………………….4 2.1.2 螺栓(絲)……………………………………………..6 2.2 不銹鋼之應力腐蝕……………………………………….16 2.2.1 腐蝕………………………………………………...16 2.2.2 應力腐蝕破裂之成因與特徵……………………...16 2.2.3 裂紋之成因與機制………………………………...20 2.2.4 壓應力之應力腐蝕破裂…………………………...25 2.2.5 應力腐蝕破裂之特徵……………………………...25 2.3 麻田散體相變態………………………………………….29 2.4 應變誘發麻田散體相變態……………………………….31 2.5 工程材料之破損分析…………………………………….34 2.5.1 簡介與定義………………………………………...34 2.5.2 相關方法步驟……………………………………...34 第三章 實驗方法………………………………………………………41 3.1 實驗材料………………………………………………….41 3.2 實驗流程與方法………………………………………….42 3.2.1 實驗流程…………………………………………...42 3.2.2 定扭力(負荷)應力腐蝕試驗………………………43 3.2.3 電化學試驗………………………………………...44 3.3 分析方法與設備………………………………………….45 3.3.1 分析方法…………………………………………...45 3.3.2 分析設備…………………………………………...49 第四章 實驗結果與討論………………………………………………52 4.1 浸泡試驗前螺栓帽頭之觀察…………………………….52 4.1.1 表面形貌與X光繞射分析…………………...........52 4.1.2 截面形貌……………………………………...........59 4.2 經浸泡試驗後螺栓帽頭之破壞現象…………………….65 4.2.1 原材螺栓帽頭裂紋起始點之選擇性……………...65 4.2.2 原材螺栓之裂紋成長與組織之關係………….…..71 4.2.3 熱處理之作用……………………………………...78 4.2.4 施加扭力之作用…………………………………...85 第五章 結論……………………………………………………………94 參考文獻………………………………………………………………..95

[1] 王繼敏,“不銹鋼與金屬腐蝕”,科技圖書(1990)。
[2] Donald Peckner and I. M. Bernstein, “Handbook of Stainless Steels”, McGraw-Hill Book Company (1977).
[3] 勞工安全衛生研究所新聞稿,“不銹鋼不保證不會腐蝕,使用不當照樣會發生”,勞工安全衛生研究所網頁 (2005)。
[4] 曹常成、張祐語、王朝正、劉正章,“冷媒產生器採樣閥304不銹鋼固定螺栓破斷分析”,防蝕工程,第二十卷第一期,pp. 111 (2006)。
[5] P. Muraleedharn, H. S. Khatak, J. B. Gnanamoorthy, and P. Rodriguez, “Effect of cold work on stress corrosion cracking behavior of types 304 and 316 stainless steels”, Metallurgical transactions A, Vol. 16A, pp. 285-289 (1985).
[6] S. Torchio, “Stress corrosion cracking of type AISI304 stainless steel at room temperature; influence of chloride content and acidity”, Corrosion science, Vol. 20, pp. 555-561 (1980).
[7] O. Raquet, M. Helie and G. Santanni, “Initation and propagation of stress corrosion cracking of type 304L austenitic stainless steel in hot aqueous chloride solution”, Corrosion, Vol. 52, No. 9, pp. 697-707 (1996).
[8] Earl R. Parker, “Materials data book for enguneers and scienists”, McGraw-Hill Book Company (1976).
[9] 燁聯技術服務處,“不銹鋼使用手冊”,燁聯公司。
[10] 日本螺紋工業協會編輯委員編著(賴耿陽、歐靜枝編譯),“螺紋、螺絲、螺帽”,復文書局 (1987)。
[11] 謝旻淵,“台灣螺絲螺帽產業發展軌跡及成形技術的創新模式之研究”,國立高雄第一科技大學機械與自動化工程所,碩士論文 (2003)。
[12] 邱貽昱,“螺絲產業對大陸投資之研究”,國立高雄第一科技大學運輸倉儲營運所,碩士論文 (2002)。
[13] ISO 3506-1 (1997): Mechanical properties of corrosion-reslstant stainless steel fasteners – Part 1:Bolts, screws and studs.
[14] 梁成浩,“金屬腐蝕學導論",機械工業出版社,中國 (1999)。
[15] M. G. Fontana, “Corrosion Engineering”, 3rd eduition, McGraw-Hill Book Company (1987).
[16] B. S. Phull, S. J. Pikul, and R. M. Kain, “Seawater Corrosivity Around the World: Result from Five Years of Testing”, Corrosion Testing in Natural Water: second Volume, ASTM STP 1300 (1997).
[17] 柯賢文編著,“腐蝕及其防制”,全華科技 (1995)。
[18] 孫秋霞編,“材料腐蝕與防護",冶金工業,中國 (2003)。
[19] Russell H. Jones, “Stress corrosion cracking”, ASM International (1992).
[20] 莊東漢,“材料破損分析”,五南圖書 (2007)。
[21] E. N. Pugh, “International conference on stress corrosion cracking and hydrogen embrittlement of iron base alloys”, June, pp. 12-16 (1973).
[22] A. J. Forty and P. Humble, “The influence of surface tarnish on the stress-corrosion of alpha brass”, Philosophy Magazine, Vol. 8, pp. 247-264 (1963).
[23] J. M. Silcock and P. R. Swann, “Environment-sensitive fracture of engineering”, The Metallurgical Society, pp. 133 (1979)
[24] J. C. Scully, “Stress corrosion of type 304 steel in H2SO4/NaCl environments at room temperature”, Corrosion, Vol. 25, pp. 493-501 (1969).
[25] J. C. Scully, “Fractographic observations on the stress corrosion cracking of some austentic stainless steels in MgCl2 solution at 154 oC”, Corrosion, Vol. 26, pp. 387 (1970).
[26] 劉松柏編譯,“材料強度破壞學”,成璟文化 (2000)。
[27] H. H. Uhlig, “Physical metallurgy of stress corrosion fracture”, Interscience, pp. 1 (1959).
[28] 褚武揚、喬利杰、陳奇志、高克瑋,“斷裂與環境斷裂",科學出版社,中國 (2000)。
[29] Michinori Takano and Hiroshi Takaku, “Stress corrosion of type 304 stainless steel under residual stress”, Corrosion, Vol. 37, pp. 142-146 (1981).
[30] Wu-Yang Chu, Jine Yao and Chi-Mei Hsiao, “Stress corrosion cracking of austenitic stainless steel under compressive sress”, corrosion, Vol. 40, pp. 302-306 (1984).
[31] 劉益助,“麻田散鐵變態對沃斯田鐵不銹鋼疲勞裂縫成長特性影響研究”,國立台灣海洋大學材料工程研究所,碩士論文 (2003)。
[32] L. Remy and A. Pineau, “Observation of stacked layers of twins and epsilon martensite in a deformed austenitic stainless steel”, Metallurgical Transactions”, Vol. 5, pp. 963-965 (1973).
[33] 黃祺祥,“18Cr-8Ni沃斯田鐵不銹鋼之冷間加工硬化之研究”,國立成功大學礦冶及材料科學研究所,碩士論文 (1982)。
[34] G. B. Olson and Morris Cohen, “Kinetics of strain-induced martensitic nucleation”, Metallurgical transactions A , Vol. 6A, pp. 791-795 (1975).
[35] Peter Hedstrom, “Deformation induced martensitic transformation of metastable stainless steel AISI 301”, Lulea university of technology (2005).
[36] J. Cina, J. Iron Steel Inst., Vol. 177, pp. 406 (1954).
[37] J. Dash and H. M. Otte, “The martensite transformation in stainless steel”, Acta Metall., Vol. 11, pp. 1169 (1963).
[38] ASTM G31-72 (Reapproved 1999): Standard Practice for Laboratory Immersion Corrosion Testing of Metals.
[39] 賴兆賢,“碳鋼氫氣管線之氫損傷研究”,國立台灣科技大學機械工程所,碩士論文 (2004)。
[40] ASTM G36-94 (Reapproved 1999): Standard Practice for Evaluating Stress-corrosion-Cracking Resistance of Metals and Alloys in Boiling Magnesium Chloride Solution.
[41] ASTM G5-94(Reapproved 1999): Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements.
[42] Donald J. Wulpi., “Understanding how components fail”, American Society for Metals (1985).
[43] Robert F. Mehl, “Metal Handbook”, 8th Edition, American Society for Metals (1972).
[44] 江景昇,“黃銅於原子力顯微鏡接觸式量測模式造成之應力腐蝕”, 國立台灣科技大學機械工程所,碩士論文(2006)。
[45] 許淳淳、張新生、胡鋼、王東,“不銹鋼冷加工變形誘發麻田散體相變及其腐蝕行為”,材料保護,Vol.35,No.3,pp.15,中國(2002)。
[46] 劉嵩俊,“鋼鐵內應力之研究和應用”,中華民國鑄造學會 (1994)。

QR CODE