簡易檢索 / 詳目顯示

研究生: 張辰豪
Chen-hao Chang
論文名稱: 有限元素參數化彈片分析與驗證
Parametric Contact Spring Analysis and Validation
指導教授: 李維楨
Wei-chen Lee
口試委員: 林上智
Shang-Chih Lin
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 插拔力彈片連接器殘留應力包辛格效應有限元素分析
外文關鍵詞: Mating force, contact spring, connector, residual stress, Bauschinger effect, FEA
相關次數: 點閱:405下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連接器在出廠前需要透過插拔力測試來判斷其是否符合機械規範,適當的插拔力可藉由彈片結構的設計與選用材料來實現,因此工程人員在設計階段通常會使用有限元素法來優化彈片結構的設計。本論文的研究目的為透過有限元素法的分析驗證與參數化彈片分析,針對彈臂式連接器提出一個設計插拔力較為準確的方法。第一部分透過材料試驗並使用有限元素分析軟體ANSYS Workbench來建構懸臂樑模型,並比較不同元素、和材料模型的設定對於分析值誤差的影響,藉此定義適當的懸臂樑模型,並透過材料重現性驗證來確定分析值預估的誤差範圍。從模型驗證結果可知,定義適當的SUS301模型與POM模型其平均分析誤差約介於6-11 %之間。第二部分建立一參數化彈片模型來分析插拔力。首先透過剛性試驗發現彈片材料SUS3013/4H具有明顯的包辛格效應,而折彎成形的彈片可藉由過彎回折工法顯著地降低其效應。在建構彈片模型時,我們選擇具有包辛格效應的材料模型,並分析彈片在折彎成形與組裝過程產生的殘留應力。透過實際的插拔力測試來驗證分析結果,比較結果顯示考慮殘留應力的彈片模型較接近實測值,其分析值誤差約在10 %。建立適當的有限元素彈片模型後,我們利用相關係數法對彈片進行尺寸分析以找出關鍵尺寸,透過實驗設計來生成插拔力與等效塑變的反應曲面。最後根據此反應曲面來撰寫彈片參數化設計程式,讓設計者可藉由自行定義的彈片尺寸來設計適當的插拔力與彈臂的永久變形。


    Mating and unmating force tests are one of the critical inspections for connectors before launching to the market. Proper force performance can be obtained by selecting the appropriate materials and optimizing the structure of contact spring. To analyze the structure of contact spring, finite element analysis (FEA) is widely used in the design stage. The objective of this paper is to identify the validation of FEA model to obtain more accurate results of the parametric contact spring analysis. The first part is to conduct the material tests to modify the cantilever beam model in ANSYS Workbench. We compared FEA model with different element types, and material models. The results of model validation showed that the analysis error for SUS301 model and POM model is within 11 %. The second part is to present a parametric model of contact spring to analyze the MF&UF. The results of stiffness test showed that SUS301 3/4H has significant Bauschinger effect and two-steps bending process can improve the backward strength of contact spring. Therefore, the kinematic hardening material model including the Bauschinger effect is used. Residual analysis showed that considering the residual stress of contact spring during the bending and assembly process can make the FEA results more close to the experimental results and the analysis error is within 10 %. To optimize the structure of contact spring, the parameter correlation method is used to identify the important dimensions of contact spring and the design of experiment is employed to construct the response surface. Finally, we developed a program based on the response surface to modify the designated MF&UF and permanent set by entering the dimensions of contact spring.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 連接器之插拔力分析 3 1.2.2 材料之機械性質分析 5 1.2.3 有限元素法應用於結構分析之探討 7 1.3 研究目的 10 第二章 研究方法與理論 11 2.1 研究流程概述 11 2.2 有限元素分析 12 2.2.1 有限元素法基本原理 12 2.2.2 有限元素法分析流程 13 2.2.3 材料破壞理論 14 2.2.4 包辛格效應 15 2.2.5 材料模式 16 2.2.5.1 等向性線性模式 16 2.2.5.2 雙線性動態性硬化模式 17 2.2.5.3 多段線性動態性硬化模式 17 2.3 有限元素法之模型驗證 18 2.3.1 彈性模數 19 2.3.2 元素類型 20 2.3.2.1 BEAM元素 20 2.3.2.2 PLANE元素 21 2.3.2.3 SHELL元素 22 2.3.2.4 SOLID元素 22 2.3.3 收斂性分析 23 2.3.4 材料模型 23 2.3.4.1 線性之拉伸試驗模型 24 2.3.4.2 雙線性之拉伸試驗模型 24 2.3.4.3 三線性之拉伸試驗模型 26 2.3.4.4 多段線性之拉伸試驗模型 28 2.3.4.5 雙線性之彎曲試驗模型 30 2.3.4.6 三線性之彎曲試驗模型 31 2.3.4.7 雙線性之雙模數模型 32 2.3.4.8 三線性之雙模數模型 34 2.4 參數化彈片結構分析 35 2.4.1 尺寸分析 38 2.4.2 反應曲面 41 2.4.3 彈片參數化設計 42 第三章 實驗架構 43 3.1 實驗目的 43 3.2 實驗材料 43 3.3 實驗機台 44 3.4 拉伸試驗 46 3.5 壓縮試驗 47 3.6 彎曲試驗 47 3.7 懸臂樑試驗 49 3.8 折彎剛性試驗 50 3.9 插拔力試驗 52 第四章 有限元素誤差分析 54 4.1 彈性模數之比較 54 4.2 模型定義與收斂性分析 55 4.2.1 最大等效應力 57 4.2.2 最大變形量 59 4.3 元素測試 59 4.3.1 線性拉伸模型 60 4.3.2 雙線性拉伸模型 62 4.3.3 三線性拉伸模型 65 4.3.4 多段線性模型 67 4.3.5 雙線性彎曲模型 69 4.3.6 三線性彎曲模型 72 4.3.7 雙線性雙模數模型 74 4.3.8 三線性雙模數模型 75 4.4 材料模型比較 76 4.4.1 PLANE183元素 76 4.4.2 SOLID186元素 79 4.5 材料重現性驗證 82 4.5.1 POM 82 4.5.2 SUS301 H 84 4.6 結果討論與建議設定 86 4.6.1 POM 87 4.6.2 SUS301 88 第五章 參數化彈片分析 90 5.1 彈片材料之包辛格效應 90 5.1.1 剛性試驗結果 90 5.1.2 過彎回折法之過彎角度探討 91 5.2 彈片尺寸分析結果 93 5.3 彈片反應曲面 95 5.4 彈片參數設計 97 第六章 結論與未來展望 100 6.1 結論 100 6.2 未來研究方向 101 參考文獻 102 附錄 104

    [1] 洪健龍 and 徐僉昱, "EIA-364-C 規範介紹," 連接器產業通訊, 1998.
    [2] Y. Ling, "Mating mechanics and stubbing of separable connectors," 1998, pp. 6-13.
    [3] Y.-L. Hsu, Y.-C. Hsu, and M.-S. Hsu, "Shape optimal design of contact springs of electronic connectors," Journal of Electronic Packaging, Transactions of the ASME, vol. 124, pp. 178-183, 2002.
    [4] C. Kun-Nan, G. Fu-Tsuen, C. Cheng-Chin, and C. Hsien-Chie, "Structural optimization of contact springs of electrical connectors using response surface methodology," in Electronic Materials and Packaging, 2008. EMAP 2008. International Conference on, 2008, pp. 239-242.
    [5] 蘇柏魁, "彈片式連接器之接觸彈簧插拔力最佳化分析研究," 碩士論文, 製造科技研究所, 國立台北科技大學, 臺灣,台北, 2005.
    [6] J. Bauschinger, "Ueber die Veranderung der Elasticitatsgrenze und elastcitatsmodul verschiedener," Metal Civiling N.F., pp. 289-348, 1881.
    [7] M. E. Kassner, P. Geantil, L. E. Levine, and B. C. Larson, "Backstress, the Bauschinger effect and cyclic deformation," in International Conference Recent Developments in the Processing and Applications of Structural Metals and Alloys, June 22, 2008 - June 25, 2008, Ancona, Italy, 2009, pp. 39-51.
    [8] Y. Hattori, K. Furukawa, H. Hamasaki, and F. Yoshida, "Experimental and simulated force-displacement relations under cyclic bending deformation of copper-based spring materials," in 26th International Conference on Electrical Contacts, ICEC 2012, May 14, 2012 - May 17, 2012, Beijing, China, 2012, pp. 142-145.
    [9] ASTM Standard E111, "Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus," ed. West Conshohocken,PA: ASTM International, 2010.
    [10] E. L. Gaertner and M. G. D. d. Bortoli, "Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact," presented at the ANSYS International conference, 2006.
    [11] E. Wang, T. Nelson, and R. Rauch, "Back to Elements - Tetrahedra vs. Hexahedra," in ANSYS International conference, 2004.
    [12] ANSYS Inc, "Element reference," 2009.
    [13] M. A. Chowdhury, D. M. Nuruzzaman, and B. K. Roy, "Experimental investigation of friction coefficient and wear rate of stainless steel 304 sliding against smooth and rough mild steel counterfaces," Gazi University Journal of Science, vol. 26, pp. 597-609, 2013.
    [14] Instron Corporation, "Instron Series 3300 Load Frames Reference Manual - Equipment," I. Corporation, Ed., ed. Norwood, 2004.
    [15] ASTM Standard A370, "Standard Test Methods and Definitions for Mechanical Testing of Steel Products," ed. West Conshohocken, PA: ASTM International, 2014.
    [16] ASTM Standard D638, "Standard Test Method for Tensile Properties of Plastics," ed. West Conshohocken, PA: ASTM International, 2014.
    [17] ASTM Standard D695, "Standard Test Method for Compressive Properties of Rigid Plastics," ed. West Conshohocken, PA: ASTM International, 2010.
    [18] ASTM Standard D790, "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," ed. West Conshohocken, PA: ASTM International, 2010.
    [19] ASTM Standard E855, "Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading," ed. West Conshohocken, PA: ASTM International, 2013.
    [20] B. W. Inc., "Cumulative Stress and the Bauschinger Effect," Brush Wellman technical tidbits, 2009.
    [21] E. E. S. a. Publications, "Mating and unmaintg force test procedure for electrical connectors and sockets," ed. Wilson Boulevard, USA: Electronic Components, Assemblies & Materials Association, 2007.
    [22] R. C. Hibbeler, Mechanics of Materials, 5th edition ed. New Jersey: Prentice Hall, 2003.
    [23] A. C. Ugural, Stresses in Plates and Shells, 2nd edition ed. New York: McGraw Hill, 1999.

    無法下載圖示 全文公開日期 2020/02/09 (校內網路)
    全文公開日期 2025/02/09 (校外網路)
    全文公開日期 2020/02/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE