簡易檢索 / 詳目顯示

研究生: 黃詠翔
Yong-xiang Huang
論文名稱: 釔安定氧化鋯奈米薄膜離子導電效應研究及殘留應力之分析
The research of Ionic conductivity effects and Nano-scale YSZ film residual stress analysis.
指導教授: 周振嘉
Chen-chia Chou
口試委員: 李志偉
Jyh-wei Lee
黃柏仁
Bohr-ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 釔安定氧化鋯離子導電殘留應力分析濺鍍薄膜電解質固態氧化物燃料電池
外文關鍵詞: yttria-stabilized zirconia, ionic conduction, residual stress analysis, sputtering, thin-film electrolyte, solid oxide fuel cell
相關次數: 點閱:533下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用磁控濺鍍技術,製備釔安定氧化鋯(8YSZ)薄膜於不同基板上,並觀察不同製程條件下對電性變化的影響,8YSZ薄膜是否具備高離子導電效率的議題一直以來備受爭議,本文利用不同疊構設計來確認8YSZ薄膜確實有遠高於塊材的導電率,並以殘留應力的觀點來解釋薄膜化後氧離子快速傳導之現象。
    在第一部分中在不同基板上鍍製8YSZ薄膜,首先可以發現在LaAlO3、LiNbO3、MgO基板下的8YSZ薄膜隨著晶格常數的改變會呈現不同的殘留應力。而和電性分析的結果相比較,可以發現隨著基板晶格常數變小薄膜阻抗值有大幅上升的趨勢。為解釋在薄膜中發生之特殊現象,本研究利用低掠角X光繞射對殘留應力進行分析,以傳統的sin2ψ法加以改良的cos2αsin2ψ 法來進行,而結果顯示首先在三種不同基板下薄膜皆呈現了壓應力,而8YSZ薄膜在三種基板上殘留應力值為8YSZ/LaAlO3(-0.68 GPa) > 8YSZ/LiNbO3(-0.94 GPa)>8YSZ/ MgO(-1.63 GPa),而導電率也呈現同樣結果σYSZ/LaAlO3>σYSZ/LiNbO3>σYSZ/MgO,可知殘留應力值確實影響氧化鋯薄膜的離子導電性。第二部分利用不同熱處理條件來改變薄膜性質,首先發現於矽基板上8YSZ薄膜呈現了張應力場,而隨著退火溫度上升發生了應力釋放現象,和電性分析的結果相比較,隨著殘留張應力值越來越小,離子導電率也逐步的下降,其中特性最佳為8YSZ/Si(1.34 GPa)於500℃下的導電率達到了約0.37(S/cm)。
    由結果可以發現隨著殘留應力值不同,8YSZ的導電性呈現了大幅度的變化,尤其當應力場由壓應力轉換成張應力時,離子傳導能力也向上提升,造成此現象之原因應是在薄膜和基板的介面處因材料間的不匹配而產生了空乏區,而氧離子在傳導時藉由此通道產生了快速移動的行為,因此當內部為壓應力時對此通道產生擠壓而導致導電性下降,而當在適當的張應力時擴張了通道使氧離子的移動更為容易。因此本研究利用控制薄膜應力場的變化可達到提升8YSZ薄膜的離子導電能力,而進一步將其運用在提升SOFC效能之目的。


    In this study, the YSZ (8 mole% Yttria-stabilized zirconia,8YSZ) thin film was deposited on different substrates, changed the process conditions, and observed the effect on the conductivity variations. The issue of 8YSZ film availability of high ionic conductivity effective has been controversial. Using different stack configurations designed to confirm 8YSZ film does have a much higher bulk conductivity, and used residual stress of view to explain the phenomenon of rapid conduction of oxygen ions in the film.
    First part, the YSZ thin film was deposited on different substrates. It can be found the 8YSZ thin film on the LaAlO3、LiNbO3、MgO substrates with the change of the lattice constant will show different residual stresses. So using the low Grazing Incidence X-Ray Diffraction measured the residual stresses, and analyzed by the cos2αsin2ψ method. The results showed that 8YSZ thin film on the different substrate presented a compressive stress fields .The residual stress values are 8YSZ/LaAlO3(-0.68 GPa)>8YSZ/LiNbO3(-0.94 GPa) >8YSZ/ MgO(-1.63 GPa). The conductivity also showed the same results: σYSZ/LaAlO3 >σYSZ/LiNbO3>σYSZ/MgO. So the residual stress does influence the ionic conductivity of 8YSZ films. The second part, using different heat treatment conditions to change the film properties, 8YSZ films found on the silicon substrate presented a tensile stress field. With the increase of annealing temperature stress relief phenomenon occurred, and with the smaller value of the residual tensile stress, the ionic conductivity decreased gradually. The best of the 8YSZ/Si(1.34 GPa) the conductivity reached about 0.37 (S / cm) at 500℃.
    It can be found with different residual stress, 8YSZ presented a significant conductivity change, especially, when the stress field by the compressive stress is converted into tensile stress. The reason of this phenomenon should be the generated channel at the interface of the film and the substrate due to the mismatch, the oxygen ions transport utilize this channel to produce a fast-moving behavior. When the compressive stress produced, channel is squeezed lead to decreased the conductivity. And when the appropriate tensile stress produced, expanding the channel that make oxygen ions easier to move.
    In this study suggests that utilize control film stress field reached to improve the ionic conductivity of the 8YSZ film, further enhancing the performance of SOFC power generation efficiency.

    目錄 中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 第二章 基礎理論與文獻回顧 2.1固態氧化物燃料電池 2.1.1固態氧化物燃料電池簡介 2.1.2電解質基本傳導原理 2.2材料簡介 2.2.1釔摻雜氧化鋯之物理特性 2.2.2釔摻雜氧化鋯之導電特性 2.2.3各基板材料之性質 2.3 薄膜殘留應力 2.3.1 殘留應力量測方法 2.3.2 以固定低掠角繞射(Grazing Incidence X-Ray Diffraction,GIXRD)分析殘留應力 2.4 交流阻抗分析儀原理 2.5 異質材料介面間的離子導電機制 2.5.1空間電荷區域對離子導電的影響 2.5.2異質結構匹配對離子導電的影響 2.6 YSZ薄膜文獻回顧 2.6.1 高離子導電率之YSZ薄膜 2.6.2 YSZ薄膜導電率下降之文獻 2.7 研究動機與目的 第三章 實驗方法 3.1 實驗設計 3.2阻抗計算方法 3.3實驗藥品規格及儀器設備 3.4實驗流程 3.5 磁控式濺鍍系統與製程參數 3.6分析儀器之參數設定與介紹 3.6.1 場發射型掃描式電子顯微鏡與能量散佈分析儀 3.6.2 X光繞射分析儀 3.6.3 原子力顯微鏡 3.6.4 拉曼光譜分析 3.6.5 X射線光電子能譜儀 3.6.6色度計 3.6.7 電性量測與分析方法 第四章 結果與討論 4.1 YSZ薄膜沉積於不同基板下之變化 4.1.1 YSZ薄膜沉積之膜厚與成分分析 4.1.2 YSZ薄膜沉積於不同基板下之電性分析 4.1.3 YSZ薄膜之殘留應力分析 4.1.4 薄膜殘留應力對電性之影響 4.2 YSZ薄膜隨熱處理溫度之變化 4.2.1 YSZ薄膜熱處理後之微觀結構 4.2.2 YSZ薄膜熱處理後之電性量測 4.2.3 YSZ薄膜經熱處理後殘留應力分析 4.2.4 薄膜殘留應力和電性間關係 4.3 YSZ薄膜殘留應力對成分及鍵結之影響 4.3.1 XPS能譜成分分析結果 4.3.2 以XPS能譜分析薄膜鍵結變化 4.3.3 YSZ薄膜之拉曼光譜分析 第五章 結論 第六章 參考文獻

    1. 管衍德,「燃料電池技術」,全華圖書出版,(2010)。
    2. N. Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics, 174, 1-4, p.271-277, (2004).
    3. S. C. Singhal, M. Dokiya, et al., Solid Oxide Fuel Cells VIII (SOFC VIII), The Electrochemical. Society, Inc., 88, p.2003-07, (2003).
    4. S. C. Singhal, K. Kendall, et. al, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Oxford, UK, (2003).
    5. G. Lewis, N. Brandon, S. O’Dea, B. Steele, 2003 Fuel Cell Seminar Abstracts, Courtesy Associates, p.431, (2003).
    6. N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells., Elsevier, Amsterdam, The Netherlands, (1995).
    7. 韓敏芬、彭蘇萍,「固態氧化物燃料電池材料及製備」,科學出版,(2004)。
    8. R. L. Ciuccio, N. E. Luiz, A. J. Filho, et al., Comparative analysis properties of ceramics advanced applications in implantology, Innovations Implant Journal, 5, p.15-21, (2010).
    9. K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell, Journal of Alloys and Compounds, 250, p.486-491, (1997).
    10. 王偉仲,「固態電解質微波優化與薄型化感測器特性研究」,國立台灣科技大學機械工程系碩士學位論文,(2011)。
    11. Y. Suzuki and T. Takahashi, Denki Kagaku, 39, p.406, (1971).
    12. M. A. C. G. Van De Graaf and A. J. Burggraaf, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 744, (1984).
    13. J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids, 30, p.2657-2670, (1969).
    14. E. J. L. Schouler, Ph. D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, (1979).
    15. T. Takahashi, H. Iwahara, Y. Suzuki and D. Kagaku, J. Phys. Chem. Solids, 39, p.665, (1971).
    16. 羅文志,「氧空缺控制對氧化鋯離子導電率之研究」,國立台灣科技大學機械工程系碩士學位論文,(2006)。
    17. J. F. Baumard and P. Abelard, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 555, (1984).
    18. Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn, 1610, (1997).
    19. N. H. Anderson, K. Claussen, M. A. Hackett, et.al, in Transport-Structure Relations in Fast Ion and Mixed Conductor, Riso National Laboratory, Roskilde, Denmark, p.279, (1985).
    20. A. Nakamura and J. B. Wagner, Jr., Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure, J. Electrochem. Soc., 133, p.1542-1548, (1986).
    21. Ohring, M.. Materials Science of Thin Films. San Diego: Academic Press.(2002).
    22. Birkholz, M. . Thin Film Analysis by X-Ray Scattering.(2006).
    23. 邱柏凱,儀科中心簡訊77 期。(2006).
    24. Stoney, G. G., Proc. The thermal oxidation of ion-implanted zirconium “R. Soc. (Lond.)”, A82, 172, (1909).
    25. Vrinceanu, I. D., S. Danyluk, “Measurement of residual stressin single crystal silicon wafers”, IEEE, 297-301, (2002).
    26. Kusaka, K., T. Hanabusa, M. Nishida, F. Inoko, “Residualstress and in-situ thermal stress measurement of aluminum filmdeposited on silicon wafer”, Thin Solid Film, 248-253, (1996).
    27. Welzel, U., J. Ligot, P. Lamparter, A. C. Vermeulen, E. J.Mittemeijer, “Stress analysis of polycrystalline thin films andsurface regions by X-ray diffraction”, Journal of Applied Crystallography, 38, 1-29, (2004).
    28. 陳孟科,「應用GIXRD量測薄膜殘留應力與化學機械拋光的影響分析」,國立台灣科技大學機械工程系碩士學位論文,(2008)。
    29. Ma, C. H., J. H. Huang, H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, 418, 73–78, (2002).
    30. Kusaka, K., Hanabusa, T., Nishida M.,&Inoko, F. Residual stress and in-situ thermal stress measurement of aluminum film deposited on silicon wafer.Thin Solid Film, 290-291, 248-253. (1996)
    31. J. A. KilnerIonic, conductors: Feel the strain, Nature Materials, 7, p.838-839, (2008).
    32. R. Gerhardt, A. S. Nowick, Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements, Journal of the American Ceramic Society, 69 (9), p.641-646, (1986).
    33. S. P. S. Badwal, S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70-71, Part 1, p.83-95, (1994).
    34. M. Aoki, Y. M. Chiang, I. Kosacki, et al., Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society, 79 (5), p.1169-1180, (1996).
    35. N. Sata, K. Eberman, K. Eberl and J. Maler, “Mesoscopic fast ion conduction in nanometer-scale planer heterostructures,” Nature, 408, 946-949 (2000).
    36. A. Karthikeyan, C. H. Chang and S. Ramanathan, “High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and sizeeffects,” Applied Physics Letters 89, 183116 (2006).
    37. A. Peters, C. Korte, D. Hesse, N. Zakharov and J. Janek “Ionic conductivity and activationenergy for oxygen ion transport in superlattices-The multilayer system CSZ(ZrO2+CaO)/Al2O3,” Solid State Ionics 178, 67 (2007).
    38. J. Maier, Ionic conduction in space charge regions, Prog. Solid St. Chem., 23, p.171-263, (1995).
    39. J. Maier, Defect chemistry and ionic conductivity in thin films, Solid State Ionics, 23, 1-2, p.59-67, (1987).
    40. I. Kosackia, C. M. Rouleaub, P. F. Bechera, et al., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 176, p. 1319–1326, (2005).
    41. H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics, 131, 1-2, p.143-157, (2000).
    42. N. Schichtel, C. Korte, D. Hesse and J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies , Phys. Chem. Chem. Phys., 11, p.3043-3048, (2009).
    43. M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J.Bottiger, Low‐Temperature Superionic Conductivity in Strained Yttria‐Stabilized Zirconia,Adv. Funct. Mater. 20, p.2071 (2010)
    44. N. Schichtel, C. Korte, D. Hesse, J. Janek, Phys. Chem. Chem. Phys.11, 3043 (2009)
    45. J. Jiang, X.C. Hu, W.D. Shen, C.Y. Ni, J.L. Hertz, Microstructure and Ionic Conductivity of Yttria‐Stabilized Zirconia Thin Films Deposited on MgO, Appl. Phys. Lett.102, 143901 (2013)
    46. Y.W. Zhang, S. Jin, Y. Yang, G.B. Li, S.J. Tian, J.T. Jia, C.S. Liao, C.H. Yan, Electrical conductivity enhancement in nanocrystalline (RE2O3)0.08(ZrO2)0.92 (RE= Sc, Y) thin films,Appl. Phys. Lett. 77,p. 3409 (2000)
    47. X. Guo, E. Vasco, S.B. Mi, K. Szot, E. Wachsman, R. Waser, Ionic Conduction in Zirconia Films of Nanometer Thickness ,Acta Mater. 53, 5161 (2005)
    48. E. Navickas, M. Gerstl, G. Friedbacher, F. Kubel, J. Fleig, Measurement of the across-plane conductivity of YSZ thin films on silicon,Solid State Ion. 211, p.58 (2012)
    49. A. Rivera, J. Santamaria, C. Leon, Electrical conductivity relaxation in thin-film yttria-stabilized zirconia,Appl. Phys. Lett. 78, 610(2001)
    50. Jun Jiang ,Joshua L. Hertz, On the variability of reported ionic conductivity in nanoscale YSZ thin films, Springer Science+Business Media New York (2013).
    51. E. Navickas, M. Gerstl, F. Kubel, J. Fleig, J. Electrochem. Soc. 159, B411 (2012)
    52. J.H. Joo, G.M. Choi, Electrical conductivity of YSZ film grown by pulsed laser deposition,Solid State Ion. 177, p.1053 (2006)
    53. W. Jung, J.L. Hertz, H.L. Tuller, Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ), Acta Mater. 57, p.1399 (2009)
    54. M. Gerstl, G. Friedbacher, F. Kubel, H. Hutter, J. Fleig, Phys. Chem. Chem. Phys. 15, p.1097 (2013)
    55. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170, (1-2), p.9-15, (2004).
    56. S. M. Kim, J. W. Son, K. R. Lee, et al., Substrate effect on the electrical properties of sputtered YSZ thin films for co-planar SOFC applications. Journal of Electroceramics, 24, p.153-160, (2010).
    57. 段葳葳,「YSZ奈米薄膜於不同基板下之巨離子導電效應研究」,國立台灣科技大學機械工程系碩士學位論文,(2012)。
    58. 羅吉宗,「薄膜科技與應用」,全華圖書出版,(2013)。
    59. S.Jou,T.Chi, Thin films of tetragonal zirconia (3Y–TZ) deposited by reactive sputtering, Graduate Institute of Materials Science and Technology,(2006)
    60. J. J. Chambers and G. N. Parsons, Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics, Appl. Phys. Lett., 77, p.2385, (2000).
    61. G. Lucovsky, G. B. Rayner, D. Kang, et al., Electronic structure of noncrystalline transition metal silicate and aluminate alloys, Appl. Phys. Lett., 79, p.1775, (2001).
    62. M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects, Phys. Rev. B, 63, p.117-125, (2001).
    63. 馮奎智,「具低介電新穎透輝石玻璃陶瓷微波材料之發展與特性研究」,國立台灣科技大學機械工程系博士學位論文,(2013)。
    64. S. Heiroth, T. Lippert, A. Wokaun, et al., Yttria-stabilized zirconia thin films by pulsed laser deposition: Microstructural and compositional control, Journal of the European Ceramic Society, 30, p.489-495, (2010).

    QR CODE