簡易檢索 / 詳目顯示

研究生: 鄭凱如
Kai-Ru Jheng
論文名稱: 新型紫膜複合材料與晶片之光電與光學特性研究暨應用
Study of photoelectric and optical properties of new purple membrane-based composite materials and chips and the applications
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 江志強
王勝仕
張家耀
林建宏
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 223
中文關鍵詞: 細菌視紫質奈米金大腸桿菌量子點螢光共振能量轉移二倍頻
外文關鍵詞: bacteriorhodopsin, gold nanoparticles, Escherichia coli, quantum dots, Förster resonance energy transfer, second harmonic generation
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

細菌視紫質 (bacteriorhodopsin, BR) 存在於紫色細胞膜 (purple membrane, PM) 中,為一具有光電轉換特性之蛋白質,可應用於各種光電裝置。本研究將PM與β-alanine胺基酸、生物辨識分子或無機奈米粒子分別結合製成新型複合材料或晶片,探討其光電與光學性質,並進行各種材料分析。首先將β-alanine與PM溶液混合並製備單晶體,發現PM的混入可使原本β-alanine晶體成為具有光電與非線性二倍頻特性之複合晶體。其次,將抗大腸桿菌 (Escherichia coli) 抗體以avidin-biotin生物親和作用固定化在塗覆有均一方向PM膜的ITO基材上,並進行E. coli捕捉與偵測。發現PM晶片所產生之光電流會因菌被捕捉覆蓋晶片而下降,可應用於菌液濃度定量檢測;相同原理也可應用於一般革蘭氏陰性菌的檢測。再者,將奈米金粒子 (gold nanoparticles, AuNPs),以生物親和作用或化學鍵結合於塗覆有均一方向PM膜的ITO玻璃上,同樣也發現AuNPs結合濃度增加時會使PM晶片光電流下降,80 nm AuNPs所造成光電流下降效應比10 nm AuNPs顯著;且當10 nm AuNPs塗覆濃度提升至1 µM時,PM晶片可能因AuNPs的SPR效應而造成PM脈衝式光電流的延長,以及PM化學電容效應增加。最後,將綠色量子點 (quantum dots, QDs) 同樣接於塗覆有均一方向PM膜的ITO基材表面上,發現以藍光激發此PM-QDs複合晶片時,可產生連續光電流 (179.6±0.3 nA/cm2);置換電極為金電極時,則可再提升連續光電流密度至5.7 µA/cm2。進一步,量測BR之M光學中間態的衰減時間常數,發現PM與QDs結合後會縮短,因此推測藍光激發PM-QDs晶片後,QDs先發射出綠螢光而激發BR進入光循環,同時藍光也造成BR M態加速衰退而立即回到基態,如此使BR持續推出質子並累積在PM膜表面而產生連續光電流。利用TEM分析QDs於PM膜上的結合分佈情況,可估算QDs與BR間的螢光共振能量轉移 (Förster resonance energy transfer, FRET) 效率為85 %。此外,使用Maker fringes技術對PM-ITO晶片進行二倍頻量測,可得到PM膜的二階非線性係數值為 χ33(2) = 1.9×10-9 esu且χ31(2) = 1×10-9 esu,證明所塗覆在ITO電極的PM膜具有高度定向性;對於PM-QDs複合晶片,則因QDs的影響而無法測得這些參數。本研究所揭示PM複合材料與晶片之光電與光學特性,可應用於新型生物感測器和生物太陽能電池之開發。


Bacteriorhodopsin (BR) in purple membranes (PM) is a protein with photoelectric conversion property, and can be applied in various photoelectric devices. In this study, β-alanine amino acid, bio-recognition molecules and inorganic nanoparticles were each assembled with PM to form new composite materials or chips, followed by the studies of their photoelectric and optical properties as well as material analysis. First, a single crystal was prepared by mixing β-alanine and PM together and the resultant composite crystal was found to carry photoelectric and nonlinear-optical properties. Secondly, antibodies against Escherichia coli were immobilized on an ITO electrode layered by a uniformly oriented PM layer via avidin-biotin bioaffinity interaction, and then E. coli was captured and detected. The reduction of photocurrent generated by PM was observed due to cell attachment;therefore, the E. coli concentrations were quantified. The same detection principle was further applied to the detection of general gram-negative bacteria. Thirdly, gold nanoparticles (AuNPs) coated on the same unidirectionally immobilized PM layer on ITO also caused PM photocurrent reduction, with the reduction effect of 80 nm AuNPs more significant than that of 10 nm AuNPs. When coated with 1 μM 10 nm AuNPs, the transient photocurrent of the PM chip decreased slower and the chemical capacitance effect of PM increased, possibly due to the SPR effect by AuNPs. Finally, green quantum dots (QDs) were attached to unidirectional PM layer immobilized on ITO. When blue light excited the PM-QDs composite chip, a continuous photocurrent of 179.6±0.3 nA/cm2 was produced. The replacement of the ITO electrode with a gold one further increased the continuous photocurrent density was to 5.7 μA/cm2. The decay time constant of the M state of BR was decreased when QDs were present or attached to. Therefore, it was interpreted that green fluorescence emitted from QDs excited by a blue light drove BR into its photocycle;and meanwhile, the illuminating blue light accelerated the decay of the BR M state, driving BR to quickly return to its ground state. This caused an accumulation of protons on PM surface, resulting in the production of a continuous photocurrent. TEM analysis revealed the arrangement of QDs binding on PM patches and a 67 % efficiency of Förster resonance energy transfer (FRET) between QDs and PM was estimated. Moreover, the second-order nonlinear susceptibilities of the PM-ITO chip were estimated as χ33(2) = 1.9×10-9 esu andχ31(2) = 1×10-9 esu using the Maker fringes method, demonstrating a high uniformity of PM orientation on ITO. The χ33(2) and χ31(2) parameters of the PM-QDs composite chip could not be determined due to the interference of QDs. In conclusion, the revealed photoelectric and optical properties of PM-based composite materials and chips can be applied to the development of new biosensors and biological solar cells.

中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XVII 第一章 緒論 1 第二章 文獻回顧 2 2-1 Halobacterium salinarum與bacteriorhodopsin 2 2-2 BR光循環中的質子傳遞 5 2-3 BR光電響應 9 2-4 BR等效電路理論 13 2-5 BR非線性光學二倍頻特性 16 2-6 奈米金 (gold nanoparticles, AuNPs) 介紹與應用 23 2-6-1 AuNPs特性 23 2-6-2 AuNPs生物醫學應用 24 2-6-2-1 AuNPs增強拉曼散射 (Raman scattering) 於生物檢測之應用 24 2-6-2-2 AuNPs於光熱療法 (photo-thermal therapy, PTT) 與光動力療法 (photodynamic therapy, PDT) 之應用 26 2-6-2-3 AuNPs應用於比色檢驗 (colorimetric detection) 29 2-6-2-4 AuNPs應用於細胞標定影像成像與DNA檢測 31 2-6-3 AuNPs於PM研究之應用 33 2-7 量子點 (quantum dots, QDs) 特性與應用 35 2-7-1 QDs特性 35 2-7-2 QDs於LED之應用 36 2-7-3 QDs之螢光染劑應用 38 2-7-4 QDs於染料敏化太陽能電池之應用 42 2-7-5 QDs太陽能電池之應用 43 2-8 螢光共振能量轉移 45 2-9 QDs與BR的結合應用 53 第三章 實驗 60 3-1 實驗目的 60 3-2 實驗流程 61 第四章 結果與討論 68 4-1 混摻PM之β-alanine結晶特性探討 68 4-1-1 結晶外觀、SEM與AFM影像觀察 68 4-1-2 結晶的非線性光學特性 75 4-1-3 結晶的光電性質探討 77 4-2 PM生物光電晶片於生物感測器之應用 84 4-2-1 菌體檢測與架橋選用 85 4-2-2 拉曼光譜與AFM影像分析鑑定PM晶片表面改質 91 4-2-3 PM生物光電晶片之選擇性、專一性與實際樣品檢測 96 4-2-4 PM生物光電晶片的穩定性與保存性探討及目前研究之生物感測器比較 102 4-2-5 PM生物光電晶片的檢測原理推論 106 4-3 PM生物光電晶片結合AuNPs之應用 111 4-3-1 拉曼光譜鑑定於PM上鍵結AuNPs之晶片 111 4-3-2 以PM生物光電晶片檢測AuNPs及表面塗覆率與微分光電流之吸附關係探討 114 4-3-3 PM晶片添加AuNPs之D1D2光電流RC等效電路分析 123 4-4 PM結合QDs的光電特性探討 131 4-4-1 拉曼光譜與AFM影像分析鑑定於PM表面鍵結上QDs之晶片 132 4-4-2 PM結合QDs晶片的D1D2微分光電流探討 139 4-4-3 PM晶片結合QDs之D1D2光電流訊號的RC等效電路分析 144 4-4-4 PM結合QDs晶片的B1B2瞬態光電流響應探討 152 4-4-5 PM結合QDs晶片的B1B2訊號之RC等效電路分析 156 4-4-6 PM結合QDs之溶液的M態量測 162 4-4-7 PM結合QDs之溶液的理論FRET計算 165 4-4-8 PM結合QDs晶片的非線性光學之二倍頻探討 173 第五章 結論 182 第六章 參考文獻 184 第七章 附錄 199 7-1 二倍頻的origin擬合公式程式碼 199 7-1-1 石英二倍頻訊號的origin擬合公式程式碼 199 7-1-2 樣品二倍頻S-P偏振的origin擬合公式程式碼 199 7-1-3 樣品二倍頻P-P偏振的origin擬合公式程式碼 200 7-2 中英文對照與縮寫表 201

廖信銓. 微流體於細菌視紫質光電晶片製備之應用. 2015. 國立台灣科技大學化學工程研究所碩士論文.

林彥青. 細菌視紫質生物光電晶片二為掃描系統與訊號探討. 2015. 國立台灣科技大學化學工程研究所碩士論文.

林承德. 氧化石墨烯濃度對以親和吸附作用製備細菌視紫質光電晶片之影響. 2012. 國立台灣科技大學化學工程研究所碩士論文.

林其融. AFM探討分別以結合氧化石墨烯之親和吸附作用與共價鍵結作用固定化之紫膜. 2012. 國立台灣科技大學化學工程研究所碩士論文.

鄭凱如. 奈米粒子於bacteriorhodopsin生物光電晶片之應用. 2011. 國立台灣科技大學化學工程研究所碩士論文.

余安棣. 具高度方向性排列之bacteriorhodopsin生物光電晶片之製備. 2009. 國立台灣科技大學化學工程研究所碩士論文.

丁振育. 有機高分子薄膜之二倍頻效應. 1999. 國立中正大學物理研究所碩士論文.

Ai K, Liu Y, Lu L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Journal of the American Chemical Society. 2009, 131, 9496-9497.

Al-Marri AH, Khan M, Khan M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Labis JP, Siddiqui MRH, Tahir MN. Pulicaria glutinosa extract: A toolbox to synthesize highly reduced graphene oxide-silver nanocomposites. International Journal of Molecular Sciences. 2015, 16, 1131-1142.

Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G-y. High-resolution atomic force microscopy studies of the escherichia coli outer membrane:  Structural basis for permeability. Langmuir. 2000, 16, 2789-2796.

Angione MD, Cotrone S, Magliulo M, Mallardi A, Altamura D, Giannini C, Cioffi N, Sabbatini L, Fratini E, Baglioni P, Scamarcio G, Palazzo G, Torsi L. Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proceedings of the National Academy of Sciences. 2012, 109, 6429-6434.

Anikeeva PO, Halpert JE, Bawendi MG, Bulović V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Letters. 2009, 9, 2532-2536.

Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters. 2007, 7:3065-3070.

Biesso A, Qian W, El-Sayed MA. Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin. Journal of the American Chemical Society. 2008, 130, 3258-3259.

Biesso A, Qian W, Huang X, El-Sayed MA. Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. Journal of the American Chemical Society. 2009, 131, 2442-2443.

Boerneke MA, Hermann T. Conformational flexibility of viral rna switches studied by FRET. Methods. 2015, 91, 35-39.

Bouchonville N, Cigne AL, Sukhanova A, Molinari M, Nabiev I. Nano-biophotonic hybrid materials with controlled FRET efficiency engineered from quantum dots and bacteriorhodopsin. Laser Physics Letters. 2013, 10, 085901.

Bouchonville N, Le Cigne A, Sukhanova A, Saab M-b, Troyon M, Molinari M, Nabiev I. Controlled FRET efficiency in nano-bio hybrid materials made from semiconductor quantum dots and bacteriorhodopsin. Proc. SPIE. 2012, 8460, 84600X-84600X-10.

Bouchonville N, Molinari M, Sukhanova A, Artemyev M, Oleinikov VA, Troyon M, Nabiev I. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications. Applied Physics Letters. 2011, 98, 013703.

Boyd RW. Nonlinear optics. In: Boyd RW (Ed). Third Edition edn. Academic Press, Burlington, 2008, Ch. 1.

Bräuchle C, Hampp N, Oesterhelt D. Optical applications of bacteriorhodopsin and its mutated variants. Advanced Materials. 1991, 3, 420-428.

Chah S, Hammond MR, Zare RN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chemistry & Biology. 2005, 12, 323-328.

Chen HM, Jheng KR, Yu AD. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors and Bioelectronics. 2017, 91, 24-31.

Chen HM, Jheng KR, Yu AD, Hsu C-C, Lin JH. Intercalating purple membranes into 2d β-alanine crystals to enhance photoelectric and nonlinear optical properties. Journal of the Taiwan Institute of Chemical Engineers. 2016, 64, 1-8.

Chen W, Joly AG, McCready DE. Upconversion luminescence from CdSe nanoparticles. The Journal of Chemical Physics. 2005, 122, 224708.

Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Advanced Materials. 2017, 29, 1604894.

Chu LK, Yen CW, El-Sayed MA. Bacteriorhodopsin-based photo-electrochemical cell. Biosensors & bioelectronics. 2010, 26, 620-626.

Chuang CM, Brown PR, Bulović V, Bawendi MG. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater. 2014, 13, 796-801.

Cichy B, Wawrzynczyk D, Bednarkiewicz A, Samoc M, Strek W. Third-order nonlinear optical response of cuins2 quantum dots—bright probes for near-infrared biodetection. Applied Physics Letters. 2013, 102, 243702.

Cichy B, Wawrzynczyk D, Bednarkiewicz A, Samoc M, Strek W. Optical nonlinearities and two-photon excited time-resolved luminescence in colloidal quantum-confined cuins2/ZnS heterostructures. RSC Advances. 2014, 4, 34065-34072.

Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society. 2004, 126, 301-310.

Clays K, Van Elshocht S, Chi M, Lepoudre E, Persoons A. Bacteriorhodopsin: A natural, efficient (nonlinear) photonic crystal. J. Opt. Soc. Am. B. 2001, 18, 1474-1482.

Cleaver JE, Tobias CA. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature. 1977, 266, 655.

Corn RM, Higgins DA. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 1994, 94, 107-125.

Dai Q, Zhang X, Wang S, Huang B, Zhang J, Cui Y. Strong two-photon absorption of cuins2/ZnS quantum dots with various cu/in ratios. Superlattices and Microstructures. 2015, 84, 126-131.

Dancsházy Z, Drachev LA, Ormos P, Nagy K, Skulachev VP. Kinetics of the blue light-induced inhibition of photoelectric activity of bacteriorhodopsin. FEBS Letters. 1978, 96, 59-63.

Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews. 2006, 35, 209-217.

Fahmi MZ, Chang J-Y. Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting. Nanoscale. 2013, 5, 1517-1528.

Freundlich H, Heller W. The adsorption of cis- and trans-azobenzene. Journal of the American Chemical Society. 1939, 61, 2228-2230.

Gao L, Fei J, Zhao J, Li H, Cui Y, Li J. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano. 2012, 6, 8030-8040.

Gong JL, Jiang JH, Yang HF, Shen GL, Yu RQ, Ozaki Y. Novel dye-embedded core-shell nanoparticles as surface-enhanced raman scattering tags for immunoassay. Analytica Chimica Acta. 2006, 564, 151-157.

Griep M, Martin J, Rodriguez V, Winder E, Lueking D, Mackay R, Friedrich C, Karna SP Multi-functional protein-qd hybrid substrates for photovoltaics and real-time biosensing. In: 2011 11th IEEE International Conference on Nanotechnology, 15-18 Aug. 2011, 233-236.

Griep MH, Walczak KA, Winder EM, Lueking DR, Friedrich CR. Quantum dot enhancement of bacteriorhodopsin-based electrodes. Biosensors and Bioelectronics. 2010, 25, 1493-1497.

Ha HD, Jang MH, Liu F, Cho YH, Seo TS. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon. 2015, 81, 367-375.

Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 2000, 100, 1755-1776.

He JA, Samuelson L, Li L, Kumar J, Tripathy SK. Photoelectric properties of oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. The Journal of Physical Chemistry B. 1998, 102, 7067-7072.

Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2000, 1458, 135-147.

Heberle J, Riesle J, Thiedemann G, Oesterhelt D, Dencher NA. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 1994, 370, 379-382.

Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100, 13549-13554.

Hollis DB. Review of hyper-rayleigh and second-harmonic scattering in minerals and other inorganic solids. American Mineralogist. 1988, 73, 701-706.

Hong FT. Molecular sensors based on the photoelectric effect of bacteriorhodopsin: Origin of differential responsivity. Materials Science and Engineering: C. 1997, 4, 267-285.

Hong FT. Interfacial photochemistry of retinal proteins. Progress in surface science. 1999, 62, 1-237.

Hong FT, Montal M. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale. Biophys. J . 1979, 25, 465-472.

Huang J, Lewis A, Rasing T. Second harmonic generation from langmuir-blodgett films of retinal and retinal schiff bases. The Journal of Physical Chemistry. 1988, 92, 1756-1759.

Huang JY, Lewis A. Determination of the absolute orientation of the retinylidene chromophore in purple membrane by a second-harmonic interference technique. Biophys. J . 1989, 55, 835-842.

Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society. 2006, 128, 2115-2120.

Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine. 2011, 47, 1-9.
Jacobsohn M, Banin U. Size dependence of second harmonic generation in CdSe nanocrystal quantum dots. The Journal of Physical Chemistry B. 2000, 104, 1-5.

Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:  Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B. 2006, 110, 7238-7248.

Jerphagnon J, Kurtz SK. Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals. Journal of Applied Physics. 1970, 41, 1667-1681.

Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ, Leblanc RM. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. The Journal of Physical Chemistry B. 2005, 109, 3793-3799.

Jun Q, Dan W, Fu‐Hong C, Wang X, Li P, Zhen‐Feng Z, Hao H, Ming‐Lie H, Sailing H. Observation of multiphoton‐induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition. 2012, 51, 10570-10575.

Jurbergs D, Rogojina E, Mangolini L, Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters. 2006, 88, 233116.

Kagan CR, Murray CB, Bawendi MG. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Physical Review B. 1996, 54, 8633-8643.

Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J-i, Hanaya M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications. 2015, 51, 15894-15897.

Kamat PV, Christians JA, Radich JG. Quantum dot solar cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir. 2014, 30, 5716-5725.
Kessler M, Gaub HE. Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by afm. Structure. 2006, 14, 521-527.

Kim G-H, García de Arquer FP, Yoon YJ, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip AH, Kanjanaboos P, Hoogland S, Kim JY, Sargent EH. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Letters. 2015, 15, 7691-7696.

Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type ii quantum dots for sentinel lymph node mapping. Nature Biotechnology. 2003, 22, 93.

Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced raman scattering from indocyanine green on gold nanoparticles. Analytical chemistry. 2005, 77, 2381-2385.

Kouhnavard M, Ikeda S, Ludin NA, Ahmad Khairudin NB, Ghaffari BV, Mat-Teridi MA, Ibrahim MA, Sepeai S, Sopian K. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews. 2014, 37, 397-407.

Krivenkov V, Samokhvalov P, Solovyeva D, Bilan R, Chistyakov A, Nabiev I. Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin. Opt. Lett. 2015, 40, 1440-1443.

Krivenkov VA, Solovyeva DO, Samokhvalov PS, Brazhnik KI, Kotkovskiy GE, Chistyakov AA, Lukashev EP, Nabiev IR. Photoinduced modification of quantum dot optical properties affects bacteriorhodopsin photocycle in a (quantum dot)- bacteriorhodopsin hybrid material. Journal of Physics: Conference Series. 2014, 541, 1-5.

Lakowicz JR Principle of fluorescence spectroscopy. Springer science and business media, llc, new york isbn, 3 edn. Springer US, New York. 2006, Ch. 13.

Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2006, 1757, 1012-1018.
Lao UL, Mulchandani A, Chen W. Simple conjugation and purification of quantum dot−antibody complexes using a thermally responsive elastin-protein l scaffold as immunofluorescent agents. Journal of the American Chemical Society. 2006, 128, 14756-14757.

Larciprete MC, Belardini A, Sibilia C, Saab M-b, Váró G, Gergely C. Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements. Applied Physics Letters. 2010, 96, 221108.

Li B, Wang Y, Wei H, Dong S. Amplified electrochemical aptasensor taking aunps based sandwich sensing platform as a model. Biosensors and Bioelectronics. 2008, 23, 965-970.

Li C. Nonlinear optics. In: Principles and applications. Springer Singapore, Shanghai, 2017, Ch. 1.

Li PN, Ghule AV, Chang JY. Direct aqueous synthesis of quantum dots for high-performance aginse2 quantum-dot-sensitized solar cell. Journal of Power Sources. 2017, 354, 100-107.

Li R, Li CM, Bao H, Bao Q, Lee VS. Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Applied Physics Letters. 2007, 91, 223901.

Liu S, Ebrey T. The quantum efficiency for the interphotoconversion of the blue and pink forms of purple membrane. Photochemistry and photobiology. 1987, 46, 263-267.

Liu Z, Wang Y, Zhang X, Xu Y, Chen Y, Tian J. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Applied Physics Letters. 2009, 94, 021902.

Lozier RH, Bogomolni RA, Stoeckenius W. Bacteriorhodopsin: A light-driven proton pump in halobacterium halobium. Biophys. J . 1975, 15, 955-962.

Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.

Luecke H, Richter H-T, Lanyi JK. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998, 280, 1934-1937.

Müller DJ, Schabert FA, Büldt G, Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J . 1995, 68, 1681-1686.

Maker PD, Terhune RW, Nisenoff M, Savage CM. Effects of dispersion and focusing on the production of optical harmonics. Physical Review Letters. 1962, 8, 21-22.

Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005, 4, 435-446.

Mihai C, Chotani M, Elton TS, Agarwal G. Mapping of ddr1 distribution and oligomerization on the cell surface by FRET microscopy. Journal of Molecular Biology. 2009, 385, 432-445.

Miki M, Makimura S, Saitoh T, Bunya M, Sugahara Y, Ueno Y, Kimura-Sakiyama C, Tobita H. A three-dimensional FRET analysis to construct an atomic model of the actin–tropomyosin complex on a reconstituted thin filament. Journal of Molecular Biology. 2011, 414, 765-782.

Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. Journal of the American Chemical Society. 1999, 121, 8122-8123.

Miyasaka T, Koyama K. Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor. Appl. Opt. 1993, 32, 6371-6379

Mostafa HI, Váró G, Tóth-Boconádi R, Dér A, Keszthelyi L. Electrooptical measurements on purple membrane containing bacteriorhodopsin mutants. Biophys. J . 1996, 70, 468-472.

Muller DJ, Engel A. Strategies to prepare and characterize native membrane proteins and protein membranes by afm. Current Opinion in Colloid & Interface Science. 2008, 13, 338-350.

Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society. 1993, 115, 8706-8715.

Nag A, Kovalenko MV, Lee JS, Liu W, Spokoyny B, Talapin DV. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as surface ligands. Journal of the American Chemical Society. 2011, 133, 10612-10620.

Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM. Bacteriorhodopsin: A high-resolution structural view of vectorial proton transport. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2002, 1565, 144-167.

Pan Z, Mora-Seró I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J. High-efficiency “green” quantum dot solar cells. Journal of the American Chemical Society. 2014, 136, 9203-9210.

Pathak S, Davidson MC, Silva GA. Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Letters. 2007, 7, 1839-1845.

Patzelt H, Simon B, terLaak A, Kessler B, Kühne R, Schmieder P, Oesterhelt D, Oschkinat H. The structures of the active center in dark-adapted bacteriorhodopsin by solution-state nmr spectroscopy. Proceedings of the National Academy of Sciences. 2002, 99, 9765-9770.

Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. Journal of the American Chemical Society. 2004, 126, 6115-6123.

Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensors and Actuators B: Chemical. 2017, 238, 888-902.

Qaddare SH, Salimi A. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous hiv-1 gene detection at femtomolar level. Biosensors and Bioelectronics. 2017, 89, 773-780.

Rakovich A, Sukhanova A, Bouchonville N, Lukashev E, Oleinikov V, Artemyev M, Lesnyak V, Gaponik N, Molinari M, Troyon M, Rakovich YP, Donegan JF, Nabiev I. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Letters. 2010, 10, 2640-2648.

Rakovich A, Sukhanova A, Bouchonville N, Molinari M, Troyon M, Cohen JHM, Rakovich Y, Donegan JF, Nabiev I. Energy transfer processes in semiconductor quantum dots: Bacteriorhodopsin hybrid system. Proc. SPIE. 2009, 7366, 736621-736628.

Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods. 2008, 5, 763.

Rieger R, Nienhaus GU. A combined single-molecule FRET and tryptophan fluorescence study of rnase h folding under acidic conditions. Chemical Physics. 2012, 396, 3-9.

Roy P, Kantor-Uriel N, Mishra D, Dutta S, Friedman N, Sheves M, Naaman R. Spin-controlled photoluminescence in hybrid nanoparticles purple membrane system. ACS Nano. 2016, 10, 4525-4531.

Schabert, F. A., and Rabe, J. P. Vertical dimension of hydrated biological samples in tapping mode scanning force microscopy. Biophys. J . 1996, 70, 1514-1520.

Schlaf R, Murata H, Kafafi ZH. Work function measurements on indium tin oxide films. Journal of Electron Spectroscopy and Related Phenomena. 2001, 120, 149-154.

Schmidt PK, Rayfield GW. Hyper-rayleigh light scattering from an aqueous suspension of purple membrane. Appl. Opt. 1994, 33, 4286-4292.

Schranz M, Baumann RP, Rhinow D, Hampp N. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy. The Journal of Physical Chemistry B. 2010, 114, 9047-9053.

Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R, Zhang JZ. Unique gold nanoparticle aggregates as a highly active surface-enhanced raman scattering substrate. The Journal of Physical Chemistry B. 2004, 108, 19191-19197.

Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. The Journal of Cell Biology. 2003, 160, 629-633.

Shanthi D, Selvarajan P, HemaDurga KK, Lincy Mary Ponmani S. Nucleation kinetics, growth and studies of β-alanine single crystals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, 110, 1-6.

Shen YR. Surface second harmonic generation: A new technique for surface studies. Annual Review of Materials Science. 1986, 16, 69-86.

Shen YR. Optical second harmonic generation at interfaces. Annual Review of Physical Chemistry. 1989, 40, 327-350.

Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon. 2013, 7, 13-23.

Sicard C, Brayner R, Margueritat J, Hémadi M, Couté A, Yéprémian C, Djediat C, Aubard J, Fiévet F, Livage J, Coradin T. Nano-gold biosynthesis by silica-encapsulated micro-algae: A “living” bio-hybrid material. Journal of Materials Chemistry. 2010, 20, 9342.

Spinicelli P, Mahler B, Buil S, Quélin X, Dubertret B, Hermier  JP. Non‐blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics. ChemPhysChem. 2009, 10, 879-882.

Stouwdam JW, Janssen RAJ. Red, green, and blue quantum dot leds with solution processable ZnO nanocrystal electron injection layers. Journal of Materials Chemistry. 2008, 18, 1889-1894.
Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabiev I. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 2004, 324, 60-67.

Sun J, Guo L, Bao Y, Xie J. A simple, label-free aunps-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosensors and Bioelectronics. 2011, 28, 152-157.

Sun L, Choi JJ, Stachnik D, Bartnik AC, Hyun B-R, Malliaras GG, Hanrath T, Wise FW. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotechnology. 2012, 7, 369.

Sun X, Fan J, Zhang Y, Chen H, Zhao Y, Xiao J. A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments. Biosensors and Bioelectronics. 2016, 79, 15-21.

Toshiki Y, Yoshihiro H, Katsuyuki K, Toshifumi T, Shukichi T, Takahiro K, Hiroshi K, Akira O. Orientation of a dip-coated bacteriorhodopsin thin film studied by second harmonic generation interferometry. Japanese Journal of Applied Physics. 2013, 52, 05DB03.

Ullman A. Characterization of organic thin films. In. Momentum Press, 2010, Ch. 12.

van Sark WGJHM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem. 2002, 3, 871-879.

Voïtchovsky K, Antoranz Contera S, Kamihira M, Watts A, Ryan JF. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys. J . 2006, 90, 2075-2085.

Walczak KA, Bergstrom PL, Friedrich CR. Light sensor platform based on the integration of bacteriorhodopsin with a single electron transistor. Active and Passive Electronic Components. 2011, 2011, 1-7.

Wang JP, Yoo SK, Song L, El-Sayed MA. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101, 3420-3423.

Wang J, Cao F, He S, Xia Y, Liu X, Jiang W, Yu Y, Zhang H, Chen W. FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta. 2018, 176, 444-449.

Wang J, Li Y, Shen Q, Izuishi T, Pan Z, Zhao K, Zhong X. Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A. 2016, 4, 877-886.

Yamada T, Haruyama Y, Kasai K, Terui T, Tanaka S, Kaji T, Kikuchi H, Otomo A. Orientation of a bacteriorhodopsin thin film deposited by dip coating technique and its chiral shg as studied by shg interference technique. Chemical Physics Letters. 2012, 530, 113-119.

Yen CW, Chu LK, El-Sayed MA. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. Journal of the American Chemical Society. 2010, 132, 7250-7251.

Zaitsev SY, Lukashev EP, Solovyeva DO, Chistyakov AA, Oleinikov VA. Controlled influence of quantum dots on purple membranes at interfaces. Colloids and Surfaces B: Biointerfaces. 2014, 117, 248-251.

無法下載圖示 全文公開日期 2023/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE